• Title/Summary/Keyword: Oxidative damage

Search Result 1,489, Processing Time 0.036 seconds

Protective Effect of a Herbal Preparation (HemoHIM) on the Self-Renewal Tissues and Immune System against γ-Irradiation (방사선에 대한 생약복합조성물(HemoHIM)의 재생조직 및 면역계 방호 · 회복촉진 효과)

  • Jo, Sung-Kee;Park, Hae-Ran;Jung, Uhee;Oh, Heon;Kim, Sung-Ho;Yee, Sung-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.805-813
    • /
    • 2005
  • In our previous study, a novel herb mixture (HIM-I) of Angelim gigas radix, Cnidium officinale rhizoma, and Paeonia japonica radix was developed to protect the intestinal and immune systems and promote its recovery against radiation damage. In this study, a new herbal preparation (HemoHIM) with the high immune modulating activity was developed from HIM-I. HIM-I was fractionated into ethanol fraction (HIM-I-E) and polysaccharide fraction (HIM-I-P). And HemoHIM was prepared by adding HIM-I-P to HIM-I. The protective activities against $\gamma$ -irradiation were compared among HemoHIM, HIM-I and the fractions. HemoHIM and HIM-I significantly decreased the radiation-induced DNA damage in vitro, and scavenged hydroxyl radicals in a dose-dependent manner. HemoHIM showed similar activity to HIM-I. In vitro proliferation assay with mouse lymphocytes and bone marrow cells showed that HIM-I-P was remarkably higher than HIM-I and HIM-I-E in cell proliferating activity. HemoHIM showed higher activity than HIM-I and this might be associated with the higher polysaccharide content. The in vivo protective effects of HemoHIM and HIM-I were investigated in $\gamma$-irradiated mice. HemoHIM increased the surviving intestinal crypts to a similar extent compared with HIM-I. In contrast, HemoHIM appeared to be more effective than HIM-I in endogenous spleen colony formation assay. The recovery of white blood cells and lymphocytes in irradiated mice were significantly enhanced by the administration of HemoHIM. Also HemoHIM administration prolonged the survival of irradiated mice. These results showed that the novel herbal preparation, HemoHIM, effectively protected the self-renewal tissues and immune system, and promoted the survival of irradiated mice. Moreover, in comparison with HIM-I, HemoHIM maintained similar activity in the reduction of oxidative damage of self-renewal tissue but exhibited the higher activity in protection and proliferation of immune and hematopoietic cells. These results suggested that HemoHIM might be more effective than HIM-I in immune modulation as well as radioprotection.

Comparison of Antioxidant Activities of Enzymatic and Methanolic Extracts from Ecklonia cava Stem and Leave (감태(Ecklonia cava) 줄기 및 잎의 효소적 추출물과 메탄올 추출물에 의한 항산화 활성비교)

  • Lee, Seung-Hong;Kim, Kil-Nam;Cha, Seon-Heui;Ahn, Gin-Nae;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1139-1145
    • /
    • 2006
  • In this study, antioxidant activities of enzymatic and methanolic extracts from E. cava stem and leave were evaluated by measuring the scavenging activities on 1,1 diphenyl 2 picrylhydrazyl (DPPH), hydroxyl radical, hydrogen peroxide and the inhibitory effects on DNA damage induced by oxidative stress of cells. Enzymatic extracts were prepared by enzymatic hydrolysis of both stem and leave using food grade five different carbohydrases (Viscozyme, Celluclast, AMG, Termamyl, Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase). The enzymatic extracts were lower than methanolic extracts in polyphenol contents, but higher in extraction yield by approximately 30%. The enzymatic extracts were superior to methanolic extracts in DPPH and H2O2 scavenging activities and DNA damage protective effect. There were no significant antioxidant activity difference between stem and leave, but the extracts of leave were relatively better than those of stem. In this study it is suggested that E. cava stem as well as its leave would be a good raw materials for antioxidants compound extraction and enzymatic hydrolysis would be a good strategy to prepare antioxidant extracts from seaweeds.

Differences in Urine Cadmium Associations with Renal Damage Markers According to the Adjustment with Specific Gravity or Urinary Creatinine (요비중 또는 크레아티닌 보정에 따른 요중 카드뮴과 신장손상지표와의 관련성 비교)

  • Kim, Yong-Dae;Eom, Sang-Yong;Yim, Dong-Hyuk;Kwon, Soon Kil;Park, Choong-Hee;Kim, Guen-Bae;Yu, Seung-Do;Choi, Byung-Sun;Park, Jung-Duck;Kim, Heon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.265-271
    • /
    • 2019
  • In general, specific gravity (SG) and urinary creatinine (CR) have been used to adjust urinary cadmium (Cd) concentrations. However, the validity of correction methods has been controversial. We compared the two adjustments to evaluate associations between urinary Cd and various renal damage markers and to evaluate the relationship between urinary Cd concentration and renal disease markers, such as estimated glomerular filtration rate (eGFR), in a relatively large general population sample. Among the 1,086 volunteers who were enrolled in this study, 862 healthy volunteers who did not have kidney disease were included in the final analysis. Urinary Cd, malondialdehyde (MDA), and N-acetyl-${\beta}$-D-glucosaminidase (NAG) concentrations were measured, the creatinine-based eGFR was calculated, and the relationships between these markers were subsequently analyzed. This study showed the use of urinary Cd concentration adjusted with SG rather than with urinary creatinine may be appropriate in studies evaluating renal function based on Cd exposure. Urinary Cd concentration adjusted with SG had a positive correlation with urinary MDA levels and a negative correlation with eGFR. This relationship was relatively stronger in women than in men. This study showed that urinary Cd level was associated with decreased eGFR in the general population, and oxidative stress was likely to act as an intermediator in this process. These results suggest that eGFR can be a very good indicator of kidney damage caused by Cd exposure in the general population.

The Responses of Antioxidative Enzymes and Salt Tolerance of Atriplex gmelini (Atriplex gmelini(가는갯능쟁이)의 내염성과 항산화 효소 반응)

  • 배정진;윤호성;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.273-280
    • /
    • 2003
  • Saline conditions invoke oxidative stress attributed to the overproduction of reactive oxygen species (ROS). Changes in quantum efficiency and antioxidative enzyme activity upon salt treatment were examined in a salt-tolerant plant, Atriplex gmelini, to test the hypothesis that salt tolerance of A. gmelini is due to the increased activity of antioxidative enzymes. A. gmelini showed optimum growth at 100 mM NaCl producing 116% of the shoot dry weight over control plants in 0 mM NaCl treatment. Healthy growth persisted up to 300 mM NaCl treatment maintaining normal internal water content and dry weight. No photochemical stress or damages on antioxidative defense system was obvious in plants of 2 and 4 day salt treatment which was indicated by increased quantum efficiency (Fv/Fm value), decreased stress index (Fo/Fm value), and increased activity of antioxidative enzymes such as SOD, APX, GR. However, the plants treated with 400 mM NaCl showed decrease in growth and in antioxidative enzyme activity although the enzyme activity was still higher than that of the 0 mM NaCl treated plants (l31%, 114%, and 134% of the SOD, APX, and GR activity, respectively). Interestingly, another important antioridative enzyme that scavenges H₂O₂ in plant cells, CAT, showed rapid decrease in its activity as salt concentration increased; 38%, 22%, 15% of the 0 mM NaCl treated plants at 200, 300, 400 mM NaCl treatments, respectively. It appears that the enzymes in ascorbate-glutathione cycle such as APX and GR play the major roles in scavenging ROS produced by salt stress in A. gmelini. After 6 days of salt treatment, the damage in photochemical and antioxidative defense system was indicated by decreased Fv/Fm value and increased Fo/Fm value. A. gmelini appears to cope with short term salt treatment by enhanced activity of the antioxidative defense system, whereas long term stress invoke oxidative stress by increased ROS due to the damages in photochemical and antioxidative system.

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor (과산화수소 엽면 처리에 의한 수수에서 한발 스트레스 완화 효과)

  • Shim, Doo-Do;Lee, Seung-Ha;Chung, Jong-Il;Kim, Min Chul;Chung, Jung-Sung;Lee, Yeong-Hun;Jeon, Seung-Ho;Song, Gi-Eun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.

Reduction of Mitochondrial Electron Transferase in Rat Bile duct Fibroblast by Clonorchis sinensis Infection (간흡충(Clonorchis sinensis)감염에 의한 흰쥐 담관 섬유모세포 미토콘드리아 전자전달효소의 감소)

  • Min, Byoung-Hoon;Hong, Soon-Hak;Lee, Haeng-Sook;Kim, Soo-Jin;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.89-99
    • /
    • 2010
  • Fibroblasts are the most common cells in connective tissue and are responsible for the synthesis of extracellular matrix components. The fibrosis associated with chronic inflammation and injury may contribute to cholangiocarcinoma pathogenesis, particularly through an increase in extracellular matrix components, which participate in the regulation of bile duct differentiation during development. Mitochondria produce ATP through oxidative metabolism to provide energy to the cell under physiological conditions. Also, mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence and aging. Alternations in mitochondrial structure and function are early events of programmed cell death or apoptosis and mitochondria appear to be a central regulator of apoptosis in most somatic cell. Clonorchis sinensis, one of the most important parasite of the human bile duct in East Asia, arouses epithelial hyperplasia and ductal fibrosis. Isolated fibroblast from the bile ducts of rats infected by C. sinensis showed increase of cytoplasmic process. In addition, decrease of cellular proliferation was observed in fibroblasts which was isolated from normal rat bile duct and then cultured in media containing C. sinensis excretory-secretory product. However, the effects of C. sinensis infection on the mitochondrial enzyme distribution is not clearly reported yet. Therefore, we investigated the structural change of C. sinensis infected bile duct and mitochondrial enzyme distribution of the cultured fibroblast isolated from the C. sinensis infected rat bile duct. As a result, C. sinensis infected SD rat bile ducts showed the features of chronic clonorchiasis, such as ductal connective and epithelial tissue dilatation, or ductal fibrosis. In addition, fibroblast in ductal connective tissue was damaged by physical effect of fibrotic tissue and chemical stimulation. Immunohistochemically detected mitochondrial electron transferase (ATPase, COXII, Porin) was decreased in C. sinensis infected rat bile duct and cultured fibroblast from infected rat bile duct. It can be hypothesized that the reason why number of electron transferase decrease in fibroblast isolated from the rat bile duct infected with C. sinensis is because dysfunction of electron transport system is occurred mitochondrial dysfunction, increase of ROS (reactive oxygen species) and apoptosis after chemical damage on the cell caused by C. sinensis infection. Overall, C. sinensis infection induces fibrotic change of ductal connective tissue, mutation of cellular metabolism in fibroblast and mitochondrial dysfunction. Consequently, ductal fibrosis inhibits fibroblast proliferation and decreases mitochondrial electron transferase on fibroblast cytoplasm. It was assumed that the structure of bile duct could not normalized and ductal fibrosis was maintained for a long period of time according to fibroblast metamorphosis and death induced by mitochondrial dysfunction.

Beneficial Effect of an Agar Mask against Skin Damage Induced by UV Exposure in SKH-1 Hairless Mice (UV조사에 의해 유발된 SKH-1 hairless 마우스의 피부노화에 미치는 한천마스크의 개선효과)

  • Song, Bo Ram;Kim, Ji Eun;Yun, Woo Bin;Lee, Mi Rim;Choi, Jun Young;Park, Jin Ju;Kim, Dong Seob;Lee, Chung Yeoul;Lee, Hee Seob;Lim, Yong;Jung, Min Wook;Kim, Bae Hwan;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.975-985
    • /
    • 2017
  • To investigate the beneficial effects of an agar gel mask (AGM) on UV-induced photoaging, SKH-1 hairless mice were treated with a topical application of AGM and an AGM dipped in essence (AGMdE). The mice were divided into an no radiation group, UV + AGM, UV + AGMdE, and UV + vehicle (PBS) treatment groups. Alterations in skin wrinkles, skin phenotype, histological structures, oxidative status, and toxicity were then evaluated during 4 weeks of exposure. The topical application of AGM and AGMdE inhibited wrinkle formation, suppressed the erythema index, prevented transepidermal water loss, and enhanced skin hydration. In addition, epidermal thickness recovered to a similar level as that in the no irradiation group in the UV + AGM and UV + AGMdE treatment groups compared with the UV + vehicle (distilled water) group. Furthermore, the expression levels of matrix metalloproteinase-1 (MMP-1) and tyrosinase were reduced in the UV + AGM and UV + AGMdE treatment groups, although the highest level varied. Moreover, superoxide dismutase (SOD) activity was significantly lower in the UV + AGM and UV + AGMdE treatment groups as compared with the UV + vehicle group. No significant alterations induced by most toxic compounds were measured in serum biochemical markers and liver and kidney histological features of the UV + AGM and UV + AGMdE treatment groups. These results suggest that AGM may protect against skin aging by regulating skin morphology, histopathological structures, and oxidative conditions.

The Impact of Cooking on the Antioxidative and Antigenotoxic Effects of Rice (호화과정이 백미, 현미, 발아현미의 항산화 및 항유전 독성 활성에 미치는 영향)

  • Kim, So-Yun;Seo, Bo-Young;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1370-1377
    • /
    • 2013
  • Rice is widely grown in Asia and is one of the major dietary staples in the world. Also, rice contains antioxidants which can prevent from oxidative stress related diseases, including cancer, atherosclerosis, and diabetes. Because the rice is consumed cooked, the effect of the cooking process on the antioxidative and antigenotoxic properties of rice is lacking. The aim of this study was to determine the effects of cooking on the antioxidant and antigenotoxic effects of white rice (WR), brown rice (BR), and germinated brown rice (GBR). The antioxidant activities were measured for total phenolic content (TPC), DPPH radical scavenging activity (DPPH RSA), total antioxidant capacity (TRAP), and oxygen radical absorbance capacity (ORAC). The highest TPC was found in uncooked BR (18.4 mg gallic acid equivalent/100 g). After cooking, the TPC of WR significantly increased, while the TPC of BR and GBR were reduced by 47.7% and 36.7%, respectively. The $IC_{50}$ for DPPH RSA was not significantly different in uncooked rice, while the DPPH RSA of WR and GBR decreased after cooking and the DPPH RSA of BR significantly increased. TRAP values in BR and GBR increased after cooking, while the value of WR decreased. The ORAC values of uncooked WR, BR, and GBR were 5.3, 4.3, and $3.9{\mu}M$ trolox equivalent at the concentration of $50{\mu}g/mL$. After cooking, the ORAC value of BR remained unchanged, while the value of GBR increased and the value of WR decreased. The antigenotoxic activities of WR, BR, and GBR were determined by measuring the inhibitory effects of $H_2O_2$-induced DNA damage on human leukocytes using the comet assay. The results showed that all rice tested showed a significant antigenotoxic effect against oxidative stress, except for the cooked white rice. Overall, our results indicate the addition of brown rice and/or germinated brown rice to cooked white rice is a good option for improving the benefits of rice.

Anti-Stress Effect of Punica granatum L. Extract against Sleep Deprivation-Induced Impairment (석류 열수 추출물의 수면박탈을 유도한 Rat 모델에서의 항스트레스 효과)

  • Na, Ju-Ryun;Kim, Sunoh;Jo, Ara;Bae, Donghyuck;Oh, Kyo-Nyeo;Kim, Yong Jae;Lee, Yoo-Hyun;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1533-1543
    • /
    • 2016
  • The anti-stress effects of Punica granatum L. (family Lythraceae, PG) on $H_2O_2$/corticosterone (CORT)-induced stress in cells and sleep-deprived rats were investigated. The PG extract showed neuroprotective effects in SH-SY5Y cells against $H_2O_2$/CORT-induced stress. Sleep deprivation led to behavioral, hormonal, and biochemical alterations in the animal model. The effects of P. granatum on physiological, behavioral, and biochemical parameters aggravated by sleep deprivation were investigated. Sleep deprivation impaired physiological (survival, body weight, and drowsiness scores) and behavioral (rotarod, passive avoidance, hot hyperalgesia, and Y maze) parameters as well as biochemical factors (cortisol, serotonin, dopamine, testosterone, and growth factor I contents in serum). These parameters were significantly recovered by PG extract in a concentration-dependent manner. The PG extract also enhanced catalase, superoxide dismutase, and non-enzymatic antioxidative activities such as glutathione compared to sleep-deprived rats. On the basis of these results, our findings suggest that Punica granatum prevents impairment of body functions induced by sleep deprivation and related oxidative damage.

Anti-obesity effect of 3,5-dicaffeoylquinic acid on high-fat diet mouse (고지방식이 마우스에서 3,5-dicaffeoylquinic acid의 항비만 효과)

  • Kang, Jin Yong;Park, Seon Kyeong;Kim, Jong Min;Park, Su Bin;Yoo, Seul Ki;Han, Hye Ju;Kim, Dae Ok;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.81-89
    • /
    • 2019
  • This study was performed to confirm the influence of chlorogenic acid (CGA) and 3,5-dicaffeyolquinic acid (3,5-diCQA) intake on problems caused by high-fat diet. CGA was more effective in suppressing weight gain than 3,5-diCQA. In contrast, 3,5-diCQA was more effective in improving glucose tolerance than CGA. In the biopsy, it was confirmed that CGA inhibited visceral fat and liver fat accumulation. 3,5-diCQA also inhibited visceral fat accumulation, but 3,5-diCQA increased liver fat accumulation. The liver fat accumulation induced oxidative stress, but 3,5-diCQA reduced oxidative damage through its antioxidant activity. The increased liver fat accumulation was because a 3,5-diCQA greatly increased Akt phosphorylation and decreased AMPK phosphorylation in the liver. Consequently, CGA was effective in alleviating the problems caused by high-fat diets, while maintaining normal balance. 3,5-diCQA also showed a positive effect on problems caused by high-fat diets, but it increased liver fat accumulation and thereby had negative consequences.