DOI QR코드

DOI QR Code

The Responses of Antioxidative Enzymes and Salt Tolerance of Atriplex gmelini

Atriplex gmelini(가는갯능쟁이)의 내염성과 항산화 효소 반응

  • Published : 2003.10.01

Abstract

Saline conditions invoke oxidative stress attributed to the overproduction of reactive oxygen species (ROS). Changes in quantum efficiency and antioxidative enzyme activity upon salt treatment were examined in a salt-tolerant plant, Atriplex gmelini, to test the hypothesis that salt tolerance of A. gmelini is due to the increased activity of antioxidative enzymes. A. gmelini showed optimum growth at 100 mM NaCl producing 116% of the shoot dry weight over control plants in 0 mM NaCl treatment. Healthy growth persisted up to 300 mM NaCl treatment maintaining normal internal water content and dry weight. No photochemical stress or damages on antioxidative defense system was obvious in plants of 2 and 4 day salt treatment which was indicated by increased quantum efficiency (Fv/Fm value), decreased stress index (Fo/Fm value), and increased activity of antioxidative enzymes such as SOD, APX, GR. However, the plants treated with 400 mM NaCl showed decrease in growth and in antioxidative enzyme activity although the enzyme activity was still higher than that of the 0 mM NaCl treated plants (l31%, 114%, and 134% of the SOD, APX, and GR activity, respectively). Interestingly, another important antioridative enzyme that scavenges H₂O₂ in plant cells, CAT, showed rapid decrease in its activity as salt concentration increased; 38%, 22%, 15% of the 0 mM NaCl treated plants at 200, 300, 400 mM NaCl treatments, respectively. It appears that the enzymes in ascorbate-glutathione cycle such as APX and GR play the major roles in scavenging ROS produced by salt stress in A. gmelini. After 6 days of salt treatment, the damage in photochemical and antioxidative defense system was indicated by decreased Fv/Fm value and increased Fo/Fm value. A. gmelini appears to cope with short term salt treatment by enhanced activity of the antioxidative defense system, whereas long term stress invoke oxidative stress by increased ROS due to the damages in photochemical and antioxidative system.

해안에 주로 분포하는 Atriplex gmelini(가는갯능쟁이)의 염 내성이 항산화 효소의 활성증가에 의한 것인가를 조사하기 위해 다양한 농도의 염 처리에 의한 광계 Ⅱ 양자효율 및 항산화 효소의 활성 변화를 조사하였다. A. gmelini는 100 mM NaCl처리구에서 가장 높은 지상부 건물함량(대조구의 116%) 및 최적의 생장을 보였으며, 300 mM NaCl처리에 의해서도 체내 수분함량과 건물량의 감소를 보이지 않아 염에 대한 높은 내성을 보였다. 단기간(2, 4일)의 염 처리시 외부 염 농도 구배에 따른 Fv/Fm값(양자효율)의 증가, Fo/Fm값(스트레스지표)의 감소 및 SOD, APX, GR과 같은 항산화 효소의 활성 증가를 나타내어 광화학적 스트레스 혹은 항산화 방어시스템의 손상을 보이지 않았다. 그러나 400 mM NaCl을 처리한 식물의 경우, 비록 대조구(0 mM NaCl)에 비해 높은 항산화 효소 활성값(SOD 171%, APX 114%, GR 134%)을 보였지만 생장감소(잎, 줄기 각각 30%, 16%) 및 고농도 염에 의한 활성의 감소양상을 나타내었다. 흥미롭게도, H₂O₂제거에 중요한 역할을 하는 또 다른 효소인 CAT의 활성이 염에 의한 빠른 감소(200, 300, 400 mM NaCl 처리구의 경우 각각 대조구의 38%, 22%, 15%)를 보여, A. gmelini는 염에 의해 생성된 활성산소 제거와 염분 내성에 ascorbate-glutathione cycle의 APX, GR이 중요한 역할을 수행하는 것으로 생각된다. 그러나, 염 처리 6일 후, Fv/Fm값의 감소, Fo/Fm값의 증가 및 항산화 효소의 활성감소를 보여 광화학적 저해 및 항산화 방어시스템의 손상을 나타내었다. A. gmelini는 단기간의 염 처리(염 처리 2, 4일)시, 염에 의해 유도된 ROS증가에 대해 항산화 시스템의 활성 강화를 통해 균형을 이루지만, 6일 이상의 지속적인 염에 의해서는 항산화 효소의 활성감소와 광화학적 손상으로 인한 ROS증가로 산화적 스트레스가 유발되는 것으로 여겨진다.

Keywords

References

  1. Aebi, H. 1974. Catalase. In Bergmeyer H.U. (ed.), Methods of enzymatic analysis. Academic Press, NY. 2: 673-684.
  2. Allen, R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049-1054. https://doi.org/10.1104/pp.107.4.1049
  3. Alscher, R.G., J.L. Donahoe and C.L. Cramer. 1997. Reactive oxygen species and antioxidants; relationships in green cells. Plant Physiol. 100: 224-233. https://doi.org/10.1111/j.1399-3054.1997.tb04778.x
  4. Asada, K. 1997. The role of ascorbate peroxidase and monodehydroascorbate reductase in $H_2O_2$ scavenging in plants. In Scandalios J.G. (ed.), Oxidative stress and the molecular biology of antioxidant defences. Cold Spring Harbor Laboratory Press, New York. pp. 715-735.
  5. Bajji, M., J.M. Kinet and S. Lutts. 1998. Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Science 137: 131-142. https://doi.org/10.1016/S0168-9452(98)00116-2
  6. Benavides, M.D., P.L. Marconi, S.M. Gallego, M.E. Cowba and M.L. Tomaro. 2000. Relationship between antioxidant defense systems and salt tolerance in Solanum tuberosum. Aust. J. Plant Physiol. 27: 273-278.
  7. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase; improved assay and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  8. Beyer, W.F. and I. Fridovich. 1987. Assaying for superoxide dismutase activity; some large consequences of minor changes in conditions. Anal. Biochem. 161: 559-566. https://doi.org/10.1016/0003-2697(87)90489-1
  9. Bowler, C., M. Van Montagu and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  10. Bowler, C., W. Van Camp, M. Van Montagu and D. Inze. 1994. Superoxide dismutases in plants. Crit. Rev. Plant Sci. 13: 199-218. https://doi.org/10.1080/713608062
  11. Bray, E.A., J. Bailey-Serres and E. Weretilnyk. 2000. Responses to abiotic stress. In Buchanan, B.B., W. Gruissem, R.L. Jones(eds.), Biochemistry and molecular biology of plants. American Society of Plant Biologists, Waldorf. pp. 1158-1203.
  12. Broadbent, P., G.P. Creissen, B. Kular, A.R. Wellburn and P. Mullineaux. 1995. Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J. 8: 247-255. https://doi.org/10.1046/j.1365-313X.1995.08020247.x
  13. Casano, L.M., H.R. Lascano and V.S. Trippi. 1994. Hydroxyl radicals and a thylakoid-bound endopeptidase are involved in light and oxygen-induced proteolysis in oat chloroplasts. Plant Cell Physiol. 35: 145-152.
  14. Charles, S.A. and B. Halliwell. 1981. Light activation of fructose bisphosphate in isolated spinach chloroplasts and deactivation by hydrogen peroxide. Planta 151: 242-246. https://doi.org/10.1007/BF00395175
  15. Foyer, C.H., M. Lelandais and K.J. Kunert. 1994. Photooxidative stress in plants. Plant Physiol. 92: 696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  16. Genty, B., J. Briantais and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem. Biophys. Acta. 990: 87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  17. Gossett, D.R., E.P. Millhollon and M.C. Lucas. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci. 34: 706-714. https://doi.org/10.2135/cropsci1994.0011183X003400030020x
  18. Greenway, H. and R. Munns. 1980. Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149-190. https://doi.org/10.1146/annurev.pp.31.060180.001053
  19. Hagar, H., N. Ueda and S.V. Shah. 1996. Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Am. J. Physiol. 271: F209-F215.
  20. Jimenez, A., J.A. Hernandez, L.A. del Rio and F. Sevilla. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114: 275-284. https://doi.org/10.1104/pp.114.1.275
  21. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with Folin-phenol reagent. J. Bio. Chem. 193: 265-275.
  22. Levine, A., R. Tenhaken, R. Dixon and C. Lamb. 1994. $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593. https://doi.org/10.1016/0092-8674(94)90544-4
  23. Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press, London. pp. 657-680.
  24. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
  25. Reimann, C. and S.W. Breckle. 1988. Salt secretion in some Chenophodium species. Flora 180: 289-296. https://doi.org/10.1016/S0367-2530(17)30324-9
  26. Rout, N.P. and B.P. Shaw. 2001. Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci. 160: 415-423. https://doi.org/10.1016/S0168-9452(00)00406-4
  27. Shalata, A. and M. Tal. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Plant Physiol. 104: 169-174. https://doi.org/10.1034/j.1399-3054.1998.1040204.x
  28. Scandalios, J.G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101: 7-12. https://doi.org/10.1104/pp.101.1.7
  29. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27-58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  30. Wyn Jones, R.G. and R. Storey. 1981. Betains. In L.G. Paleg and D. Aspinall (eds.), Plant and biochemistry of drought resistance in Plnat. Academic Press, Sydeny. pp. 121-136.