• Title/Summary/Keyword: Oxidative damage

Search Result 1,489, Processing Time 0.027 seconds

Induction of Escherichia coli $oh^8$Gua Endonuclease by Some Chemicals in the Wild Type and mutM Mutant Strains

  • Park, Yang-Won;Gang, Gyeong-Hwa;Kim, Hun-Sik;Jeong, Myeong-Hui;Choe, Gyeong-Hui
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.451-455
    • /
    • 1997
  • The effects of nalidixic acid, mitomycin C, and cadmium chloride $(CdCI_2)$ on the activity of 8-hydroxyguanine $(oh^8Gua)$ endonuclease, a DNA repair enzyme for oxidatively modified guanine, $(oh^8Gua$ were studied. Nalidixic acid and mitomycin C, typical inducers of the S0S DNA repair response in E. coli, showed different effects. Nalidixic acid raised the activity of this enzyme, but mitomycin C did not show such an effect. Cadmium chloride also induced the enzyme activity, These results show that the expression of $oh^8$ Gua endonuclease is regulated by multiple factors and can be induced under stressful conditions. In an attempt to demonstrate the importance of this enzyme in defense against DNA damage and mutagenesis, we also characterized mutM mutant for its oh8 Gua endonuclease activity. The mutM mutant showed no detectable $oh^8$ Gua endonuclease activity, unlike its wild type showing high activity. In addition, paraquat, a superoxide producing compound, failed to elevate $oh^8Gua$ endonuclease activity in this mutant. These results suggest that the mutM gene is identical to the $oh^8Gua$ endonuclease gene of E. coli. Taken together with previous reports, these results suggest that $oh^8Gua$ endonuclease plays a crucial role in the protection of aerobically growing organisms from threats of oxidative DNA damage and mutation.

  • PDF

Comet Assay as a New DNA-Level Approach for Aquatic Ecosystem Health Assessments

  • Sung, Min-Sun;Lee, Sang-Jae;Lee, Jae-Hoon;Park, Sun-Young;Ly, Sun-Yung;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.466-471
    • /
    • 2008
  • Little is known about DNA-level and physiological levels for health assessments of stream or river environments. Recently, comet assay, so called Single Cell Gel Electrophoresis (SCGE) is introduced for assessments of DNA damage in the medical science, food science and mammal toxicology. The comet assay is known as a biomarker which is one of the best barometers in assessing the DNA damage by oxidative stress. In this study, we conducted the comet assay using sentinel species, Zacco platypus, as one of the pre-warning alarm systems for the aquatic ecosystem health assessments and also applied it to Gap Stream as a model system. Tail extent moments in the S1 and S2 were 5.20 and 9.90 respectively and the moment was 19.89 in the S3. Statistical ANOVA in the tail moments showed a significant difference (n=75, p<0.05) between S1 and S3. Also, the proportions of DNA in the tail were 14.47, 23.64, and $30.04{\mu}m$ in the upstream (control site), midstream, downstream sites, respectively. Our results in the downstream were accord with previous studies of individual-level, population-level, and community-level in Gap Stream. Our results suggest that the comet assay may be used as an important tool for diagnosing ecological health of aquatic ecosystems in the level of DNA.

Radical Scavenging Effects and Protective Effect of Spatholobus suberectus against $CCl_4-induced$ Liver Damage in Rats

  • Jeon, Hoon;Cha, Dong-Seok;Ko, Sung-Hoon;Park, Ho-Jun;Lee, Yong-Jae;Lee, Se-Youn;Lim, Jong-Pil;Shin, Tae-Yong;Oh, Chan-Ho;Eun, Jae-Soon;Yang, Jae-Heon;Kim, Dae-Keun;Bu, Young-Min;Kim, Sung-Zoo
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.127-130
    • /
    • 2008
  • In the present study, we obtained an extract from the dried stem of Spatholobus suberectus Dunn by using 85% methanol (MeOH extract of S. suberectus; MSS) and investigated its radical scavenging effects in vitro and its protective effect against $CCl_4-induced$ liver damage in rats. MSS scavenged the 1,1-diphenyl-2- picrylhydrazyl radical almost completely and inhibited $FeSO_4-induced$ lipid peroxidation (LPO) in the liver homogenate. Oral administration of MSS significantly reduced the serum glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and alkaline phosphatase and inhibited LPO in the liver tissue after $CCl_4$ treatment in rats. These results suggest that S. suberectus could be a candidate agent for the treatment of diseases related to oxidative stress.

Estrogen Mediates Ischemic Damage and the Migration of Human Umbilical Cord Blood Cells

  • Kim, Jee-Yun;Yu, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young;Lee, Chae-Kwan;Kang, Sung-Goo
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.71-71
    • /
    • 2003
  • Human umbilical cord blood cells(HUCBC) are rich in mesenchymal progenitor cells, endothelial cell precursors and hematopoietic cells. HUCBC have been used as a source of transplantable stem and progenitor cells. However, little is known about survival and development of HUCBC transplantation in the CNS. Estrogen has a neuroprotective potential against oxidative stress-induced cell death so has an effect on reducing infarct size of ischemic brain. We investigated the potential use of HUCBC as donor cells and tested whether estrogen mediates intravenously infused HUCBC enter and survive in ischemic brain. PKH26 labeled mononuclear fraction of HUCBC were injected into the tail vein of ischemic OVX rat brain with or without $17\beta$-estradiol valerate(EV). Under fluorescence microscopy, labeled cells were observed in the brain section. Significantly more cells were found in the ischemic brain than in the non-ischemic brain. HUCBC transplanted into ischemic brain could migrate and survive. Some of cells have shown neuronal like cells in hippocampus, striatum and cortex tissues. These result suggest that estrogen reduces ischemic damage and increases the migration of human umbilical cord blood cells. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) though the Biohealth Products Research Center(BPRC), Inje University, Korea.

  • PDF

Antioxidant activities of Erythrina stricta Roxb.using various in vitro and ex vivo models

  • AsokKumar, K;UmaMaheswari, M;Sivashanmugam, AT;SubhadraDevi, V;Subhashini, N;Ravi, TK
    • Advances in Traditional Medicine
    • /
    • v.8 no.3
    • /
    • pp.266-278
    • /
    • 2008
  • Erythrina stricta, a deciduous tree widely used traditionally in indigenous system of medicine for various ailments such as rheumatism, fever, leprosy, epilepsy etc. The leaves of Erythrina stricta was extracted with ethanol (70%) and used for the evaluation of various in vitro antioxidant assays which includes H - donor activity, nitric oxide scavenging, superoxide anion scavenging, reducing ability, hydroxyl radical, hydrogen peroxide scavenging, total phenolic content, total flavonoid content, total antioxidant activity by thiocyanate and phosphomolybdenum method, metal chelating, $\beta$-carotene bleaching, total peroxy radical assays. The pro-oxidant activity was measured using bleomycin-dependent DNA damage. Ex vivo models like lipid peroxidation and erythrocyte haemolysis were also used to study the antioxidant property of the extract. The various antioxidant activities were compared with suitable standard antioxidants such as ascorbic acid, butylated hydroxyl toluene, $\alpha$-tocopherol, curcumin, quercetin and Trolox. The generation of free radicals viz. $O_2^{{\cdot}-}$, $OH^{\cdot}$, $H_2O_2$, $NO^{\cdot}$ and peroxyl radicals were effectively scavenged by the ethanolic extract of Erythrina stricta. In all the methods, the extract offered strong antioxidant activity in a concentration dependent manner. The total phenolic content, flavonoid content and total antioxidant activity in Erythrina stricta were determined as microgram (g) pyrocatechol, quercetin and $\alpha$-tocopherol equivalent/mg respectively. The extract did not exhibit any prooxidant activity when compared with ascorbic acid. The results obtained in the present study clearly indicates that Erythrina stricta scavenges free radicals and reduces lipid peroxidation, ameliorating the damage imposed by oxidative stress in different disease conditions and serve as a potential source of natural antioxidant.

Oxidative Damage of DNA Induced by the Cytochrome c and Hydrogen Peroxide System

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.452-456
    • /
    • 2006
  • To elaborate the peroxidase activity of cytochrome c in the generation of free radicals from $H_2O_2$, the mechanism of DNA cleavage mediated by the cytochrome c/$H_2O_2$ system was investigated. When plasmid DNA was incubated with cytochrome c and $H_2O_2$, the cleavage of DNA was proportional to the cytochrome c and $H_2O_2$ concentrations. Radical scavengers, such as azide, mannitol, and ethanol, significantly inhibited the cytochrome c/$H_2O_2$ system-mediated DNA cleavage. These results indicated that free radicals might participate in the DNA cleavage by the cytochrome c and $H_2O_2$ system. Incubation of cytochrome c with $H_2O_2$ resulted in a time-dependent release of iron ions from the cytochrome c molecule. During the incubation of deoxyribose with cytochrome c and $H_2O_2$, the damage to deoxyribose increased in a time-dependent manner, suggesting that the released iron ions may participate in a Fenton-like reaction to produce $\cdot$OH radicals that may cause the DNA cleavage. Evidence that the iron-specific chelator, desferoxamine (DFX), prevented the DNA cleavage induced by the cytochrome c/$H_2O_2$ system supports this mechanism. Thus we suggest that DNA cleavage is mediated via the generation of $\cdot$OH by a combination of the peroxidase reaction of cytochrome c and the Fenton-like reaction of free iron ions released from oxidatively damaged cytochrome c in the cytochrome c/$H_2O_2$ system.

Lamotrigine Decreased Hippocampal Damage and Improved Vascular Risk Markers in a Rat Model of Pentylenetetrazole Induced Kindling Seizure

  • Haggag, Basma S.;Hasanin, Amany H.;Raafat, Mona H.;Kawy, Hala S. Abdel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.269-278
    • /
    • 2014
  • Various antiepileptic drugs (AEDs) especially enzyme-inducing AEDs might be associated with increased vascular risk, through impairment of the endogenous antioxidative ability which may trigger oxygen-dependent tissue injury. Lamotrigine (LTG) a non-enzyme-inducing AED has scarce information regarding its effects on oxidative stress. The present study aimed to study the possible modulation of vascular risk factors of epileptogenesis by LTG, in a rat model of kindling seizure induced by pentylenetetrazole (PTZ). Four groups of male Wister rats were used; vehicle control group, PTZ group (alternate day PTZ, 30 mg/kg, i.p), LTG/PTZ group (LTG 20 mg/kg/day p.o and alternate day PTZ) and LTG group. The study period was 5 weeks. Lipoproteins and total homocysteine (tHcy), malondialdehyde (MDA) and reduced glutathione (GSH) were measured. Aortic endothelial function study and histopathological examination of the rats' brains, aortas and coronaries were conducted. Serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), tHcy, MDA, GSH levels were significantly higher in epileptic rats than normal controls rats. A decrease in HDL-cholesterol with high atherosclerotic index was also demonstrated. The administration of LTG improved the PTZ-kindled seizures. It produced a significant decrease in TC, TG and LDL-cholesterol, MDA, aortic GSH and increase in HDL-cholesterol with no significant effect on serum GSH and tHcy levels. LTG improved endothelium-dependent relaxation, decreased hippocampal neurodegenerative changes and atherosclerotic changes of aortas and coronaries. LTG decreased seizures severity, hippocampal damage and improved vascular risk markers in this rat model of kindling seizures.

Centella asiatica extract prevents visual impairment by promoting the production of rhodopsin in the retina

  • Park, Dae Won;Jeon, Hyelin;So, Rina;Kang, Se Chan
    • Nutrition Research and Practice
    • /
    • v.14 no.3
    • /
    • pp.203-217
    • /
    • 2020
  • BACKGROUND/OBJECTIVE: Centella asiatica, also known as Gotu kola, is a tropical medicinal plant native to Madagascar, Southeast Asia, and South Africa. It is well known to have biological activities, including wound healing, anti-inflammatory, antidiabetic, cytotoxic, and antioxidant effects. The purpose of this study was to determine the efficacy of extracts of C. asiatica against age-related eye degeneration and to examine their physiological activities. MATERIALS/METHODS: To determine the effects of CA-HE50 (C. asiatica 50% EtOH extract) on retinal pigment cells, we assessed the cytotoxicity of CoCl2 and oxidized-A2E in ARPE-19 cells and observed the protective effects of CA-HE50 against N-methyl-N-nitrosourea (MNU)-induced retinal damage in C57BL/6 mice. In particular, we measured factors related to apoptosis and anti-oxidation and the protein levels of rhodopsin/opsin. We also measured glucose uptake to characterize glucose metabolism, a major factor in cell protection. RESULTS: Induction of cytotoxicity with CoCl2 and oxidized-A2E inhibited decreases in the viability of ARPE-19 cells when CA-HE50 was administered, and promoted glucose uptake under normal conditions (P < 0.05). In addition, CA-HE50 inhibited degeneration/apoptosis of the retina in the context of MNU-induced toxicity (P < 0.05). In particular, CA-HE50 at 200 mg/kg inhibited the cleavage of pro-caspase-3 and pro-poly (ADP-ribose)-polymerase and maintained the expressions of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 similar to normal control levels. Rhodopsin/opsin expression was maintained at a higher level than in normal controls. CONCLUSION: A series of experiments confirmed that CA-HE50 was effective for inhibiting or preventing age-related eye damage/degeneration. Based on these results, we believe it is worthwhile to develop drugs or functional foods related to age-related eye degeneration using CA-HE50.

Antioxidant Activity of Seaweed Extracts from Kongsfjorden, an Inlet in the Arctic's Svalbard Archipelago (북극 스발바드 군도 콩스피요르드에서 채집한 해조류 추출물의 항산화 활성)

  • Lee, Jung-Im;Kim, You-Ah;Kong, Chang-Suk;Yea, Sung-Su;Han, Tae-Jun;Kang, Sung-Ho;Kim, Jee-Hee;Seo, Young-Wan
    • Ocean and Polar Research
    • /
    • v.31 no.2
    • /
    • pp.213-218
    • /
    • 2009
  • We examined the intracellular antioxidative effects of 20 Arctic seaweed extracts in Raw 264.7 cells. Each seaweed species was subjected to extraction using acetone/dichloromethane and methanol, respectively, after which the extracts were combined and used as the test sample. The antioxidant ability of all 20 seaweeds extracts was evaluated using four different activity tests, including the degree of occurrence of intracellular reactive oxygen species (ROS), $ONOO^-$, and lipid peroxidation in Raw 264.7 cells, as well as the extent of oxidative damage of genomic DNA purified from Raw 264.7 cells. Crude extracts from Monostroma obscurum, Alaria esculnta, Laminaria digitata, Desmarestia aculeata, Chorda filum, Ptilota seriata, Phycidrys rubens, Devaleraea ramentacea and Palmaria palmata exhibited significant scavenging effects on the generation of intracellular ROS. Among them, Monostroma obscurum and Phycidrys rubens significantly inhibited membrane lipid peroxidation and DNA oxidation. Moreover, Phycidrys rubens exhibited scavenging effects on peroxynitrite generated from SIN-1.

Hepatoprotective Effects of Various Enzyme Hydrolysates from Oysters on Tacrine-Induced Toxicity in Human Hepatoma Cells (타크린으로 유발한 간세포 독성에 대한 효소별 굴 가수분해물의 보호 효과)

  • Park, Hye-Jin;Do, Hyung-Joo;Kim, Ok-Ju;Kim, Andre;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This study investigated the potential hepatoprotective benefits of Crassostrea gigas oyster hydrolysates. Oysters are known to have many biofunctional properties. In particular, oyster enzymatic hydrolysates produce substances with beneficial functions. The potential hepatoprotective effects of C. gigas hydrolysates against damage induced by tacrine were evaluated in vitro in HepG2 cells. Peptides were generated from C. gigas by enzymatic hydrolysis with Neutrase, Flavourzyme, or Protamex enzyme preparations. Tacrine treatment induced considerable cell damage in HepG2 cells, as shown by significant leakage of glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH). Cells treated with C. gigas hydrolysates showed an increased resistance to oxidative challenge compared to control cells, as revealed by higher cell survival against tacrine-induced hepatotoxicity. In addition, treatment with C. gigas hydrolysates reduced the leakage of GOT and LDH. These findings indicate that enzyme hydrolysates derived from C. gigas may be of benefit for developing hepatoprotective foods and drugs.