• 제목/요약/키워드: Oxidation of carbon

검색결과 1,100건 처리시간 0.022초

Study on the surface reactions of carbon and graphite electrodes in sulfuric acid solution (황산 용액중의 분극시 나타나는 탄소전극들의 계면반응)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제6권4호
    • /
    • pp.648-662
    • /
    • 1996
  • Electrode surface reaction on glassy carbon and synthesized graphite (PVDF mixed graphite) in sulfuric acid solution is investigated by impedance spectroscopy at cyclic polarization. The redox peak, which may be due to the change of chemical adsorped functional group on electrode surface or oxidation and reduction of oxygen, is represented on glassy carbon and graphite electrode in potentio-dynamic current curve. The oxidation and reduction of these surface functional group on glassy carbon and PVDF mixed graphite have a major affect on the impedance spectrum and Faraday impedance parameter at cyclic polarization.

  • PDF

The addition of nitrogen oxides for improving the rate of catalytic ozone-induced oxidation of soot (산화질소 첨가에 의한 오존 기반 탄소입자상물질 촉매연소반응 속도의 개선)

  • Lee, Namhun;Park, Tae Uk;Lee, Jin Soo;Lee, Dae-Won
    • Journal of Industrial Technology
    • /
    • 제39권1호
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, we examined the effect of NO addition on the ozone-induced soot oxidation activity of $LaMnO_3$ perovskite catalysts. The addition of 10~20% NO ($NO_2$) with respect to the concentration of ozone effectively enhanced the rate of ozone-induced soot oxidation rate over $LaMnO_3$. However, the excessive addition of NO ($NO_2$) was detrimental to ozone-induced soot oxidation activity. It is supposed nitrogen oxides would adsorb on the catalyst and then react with carbon-oxygen species developed on soot surface, but an excessive addition of nitrogen oxide would inhibit the formation of carbon-oxygen species, which is a key intermediate in the reaction, and consequently suppress the oxidation rate of soot.

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

Bioremediation of Phenolic Compounds Having Endocrine-disrupting Activity Using Ozone Oxidation and Activated Sludge Treatment

  • Nakamura, Yoshitoshi;Daidai, Masakazu;Kobayashi, Fumihisa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권3호
    • /
    • pp.151-155
    • /
    • 2004
  • The bioremediation of water system contaminated with phenolic compounds having endocrine-disrupting activity, i.e. 2,4-dichlorophenol, 2,4-dichlorophenoxy acetic acid (2,4-D), and 2,4,5-trichlorophenoxy acetic acid (2,4,5-T), was investigated by using ozone oxidation and activated sludge treatment. Ozone oxidation (ozonation time: 30 min) followed by activated sludge treatment (incubation time: 5 days) was an efficient treatment method for the conversion of phenolic compounds in water into carbon dioxide and decreased the value of total organic carbon (TOC) up to about 10% of initial value. Furthermore, 2,4-D was dissolved in water containing salt, i.e. artificial seawater (ASW), and this water was used as model coastal water contaminated with phenolic compounds. The activated sludge treatment (incubation time: 5 days) could consume significantly organic acids produced from 2,4-D in the model costal water by the ozone oxidation (ozonation time: 30min) and decrease the value of TOC up to about 35% of initial value.

Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (3): Structural Study using Scanning Electron Microscope and X-Ray Diffraction

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Suk-Hwan;Chi, Se-Hwan;Kim, Eung-Seon
    • Carbon letters
    • /
    • 제12권1호
    • /
    • pp.8-15
    • /
    • 2011
  • We study the relationships between the thermal emissivity of nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) and their surface structural change by oxidation using scanning electron microscope and X-ray diffraction (XRD). The nonoxidized (0% weight loss) specimen had the surface covered with glassy materials and the 5% and 10% oxidized specimens, however, showed high roughness of the surface without glassy materials. During oxidation the binder materials were oxidized first and then graphitic filler particles were subsequently oxidized. The 002 interlayer spacings of the non-oxidized and the oxidized specimens were about $3.38{\sim}3.39{\AA}$. There was a slight change in crystallite size after oxidation compared to the nonoxidized specimens. It was difficult to find a relationship between the thermal emissivity and the structural parameters obtained from the XRD analysis.

A Study on the Corrosion Resistance of Free Cutting Steels after Oxy-Nitriding (진공산질화기술에 의한 쾌삭강의 내부식성 향상기술)

  • Moon, Kyoung Il;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제19권2호
    • /
    • pp.90-95
    • /
    • 2006
  • Nitriding or carburizing of carbon steels results in good mechanical properties such as high surface hardness and wear resistance but it has no affection on the corrosion resistance. Corrosion properties of nitriding and carburizing steels could be deteriorated. So, recently, there have been great demand for oxi-nitriding to enhance both mechanical properties and corrosion resistance. In this study, the corrosion resistance of carbon steel, S35C, and free cutting steel, SUM222, are prepared by vacuum nitriding and vacuum post-oxidation were compared with those treated by nitriding. After vacuum post-oxidation, $5{\mu}m$ oxide layer was formed on the nitride layer with $20{\sim}30{\mu}m$ depth. Potentio-dynamic polarization curve in corrosion test showed that the corrosion potential after post oxidation was increased from 200 mV to 800 mV in S35C and from 600 mV to 1200 mV in SUM222. SEM analyses showed that pores was increased and surface roughness became rougher with post oxidation. However, the formation of $Fe_3O_4$ resulted in the enhanced corrosion resistance of steels.

Low Potential Amperometric Determination of Ascorbic Acid at a Single-Wall Carbon Nanotubes-Dihexadecyl Hydrogen Phosphate Composite Film Modified Electrode

  • Fei, Junjie;Wu, Kangbing;Yi, Lanhua;Li, Junan
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1403-1409
    • /
    • 2005
  • A sensitive and selective electrochemical method was developed for the amperometric determination of ascorbic acid (AA) at a glassy carbon electrode (GCE) modified with single-wall carbon nanotubesdihexadecyl hydrogen phosphate (SWNT-DHP) composite film. The SWNT-DHP composite film modified GCE was characterized with SEM. The SWNT-DHP composite film modified GCE exhibited excellent electrocatalytic behaviors toward the oxidation of AA. Compared with the bare GCE, the oxidation current of AA increased greatly and the oxidation peak potential of AA shifted negatively to about -0.018 V (vs. SCE) at the SWNT-DHP composite film modified GCE. The experimental parameters, which influence the oxidation current of AA, were optimized. Under the optimal conditions, the amperometric measurements were performed at a applied potential of -0.015 V and a linear response of AA was obtained in the range from 4 ${\times}$ $10^{-7}$ to 1 ${\times}$ $10^{-4}$ mol $L^{-1}$ and with a limit of detect (LOD) of 1.5 ${\times}$ $10^{-7}$ mol $L^{-1}$. The interferences study showed that the SWNT-DHP composite film modified GCE exhibited good sensitivity and excellent selectivity in the presence of high concentration uric acid and dopamine. The proposed procedure was successfully applied to detect AA in human urine samples with satisfactory results.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

Electrodeposited NiCu Alloy Catalysts for Glucose Oxidation

  • Lim, Ji-Eun;Ahn, Sang Hyun;Jang, Jong Hyun;Park, Hansoo;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2019-2024
    • /
    • 2014
  • NiCu alloys have been suggested as potential candidates for catalysts in glucose oxidation. In this study, NiCu alloys with different compositions were prepared on a glassy carbon substrate by changing the electrodeposition potential to examine the effect of Ni/Cu ratios in alloys on catalytic activity toward glucose oxidation. Cyclic voltammetry and chronoamperometry showed that NiCu alloys had higher catalytic activity than pure Ni and Cu catalysts. Especially, Ni59Cu41 had superior catalytic activity, which was about twice that of Ni at a given oxidation potential. X-ray analyses showed that the oxidation state of Ni in NiCu alloys was increased with the content of Cu by lattice expansion. Ni components in alloys with higher oxidation state were more effective in the oxidation of glucose.

Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (탄소섬유의 양극산화가 탄소섬유 강화 복합재료의 기계적 계면 특성에 미치는 영향)

  • 박수진;오진석;이재락
    • Composites Research
    • /
    • 제15권6호
    • /
    • pp.16-23
    • /
    • 2002
  • In this work, the effect of anodic oxidation on surface characteristics of high strength PAN-based carbon fibers was investigated in mechanical interfacial properties of composites. The surface properties of the carbon fibers were determined by acid-base values, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angles. And their mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). As a result, the acidity or the $O_{ls}/C_{ls}$ ratio of carbon fiber surfaces was increased, due to the development of the oxygen functional groups. Consequently, the anodic oxidation led to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific (or polar) component. The mechanical interfacial properties of the composites, including ILSS and $K_{IC}$, had been improved in the anodic oxidation on fibers. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between fibers and epoxy resin matrix.