DOI QR코드

DOI QR Code

The addition of nitrogen oxides for improving the rate of catalytic ozone-induced oxidation of soot

산화질소 첨가에 의한 오존 기반 탄소입자상물질 촉매연소반응 속도의 개선

  • Lee, Namhun (Division of Applied RI, Korea Institute of Radiological and Medical Science) ;
  • Park, Tae Uk (Department of Chemical Engineering, Division of Chemical and Biological Engineering, Kangwon National University) ;
  • Lee, Jin Soo (Department of Chemical Engineering, Division of Chemical and Biological Engineering, Kangwon National University) ;
  • Lee, Dae-Won (Department of Chemical Engineering, Division of Chemical and Biological Engineering, Kangwon National University)
  • Received : 2019.09.11
  • Accepted : 2019.10.10
  • Published : 2019.10.31

Abstract

In this study, we examined the effect of NO addition on the ozone-induced soot oxidation activity of $LaMnO_3$ perovskite catalysts. The addition of 10~20% NO ($NO_2$) with respect to the concentration of ozone effectively enhanced the rate of ozone-induced soot oxidation rate over $LaMnO_3$. However, the excessive addition of NO ($NO_2$) was detrimental to ozone-induced soot oxidation activity. It is supposed nitrogen oxides would adsorb on the catalyst and then react with carbon-oxygen species developed on soot surface, but an excessive addition of nitrogen oxide would inhibit the formation of carbon-oxygen species, which is a key intermediate in the reaction, and consequently suppress the oxidation rate of soot.

Keywords

References

  1. 이광진, 최상민, 김태형, 서상일, 2010, 순산소 석탄 연소 발전 시스템의 성능 평가-동력 사이클의 열역학적 해석, 한국연소학회지, 15 1-11.
  2. Fan, Q., Zhang, S., Sun, L., Dong, X., Zhang, L., Shan, W., Zhu, Z., 2016, Catalytic oxidation of diesel soot particulates over Ag/$LaCoO_3$ perovskite oxides in air and $NO_x$, Chin. J. Catal., 37 428-435. https://doi.org/10.1016/S1872-2067(15)61000-2
  3. Itoh, Y., Sakakibara, Y., Shinjoh, H., 2014, Low-temperature oxidation of particulate matter using ozone, RSC Advance, 4 19144-19149. https://doi.org/10.1039/C4RA01003E
  4. 이대원, 김지은, 이진수, 이관영, 2017, 디젤엔진 배출 입자상물질의 저온 연소를 위한 페로브스카이트 촉매 및 이를 이용한 입자상물질의 오존 산화 시스템, 대한민국특허, 출원번호 10-2017-0140436.
  5. Lee, J. S., Park, T. U., Lee, K.-Y., Lee, D.-W., 2019,Oxidation of soot using ozone over potassium-substituted lanthanum manganite perovskite catalysts, Catal. Comm., under review.
  6. Russo, N., Fino, D., Saracco, G., Specchia, V., 2005, Studies on the redox properties of chromite perovskite catalysts for soot combustion, Journal of Catalysis, 229 459-469. https://doi.org/10.1016/j.jcat.2004.11.025
  7. Fu, M., Yue, X., Ye, D., Ouyang, J., Huang, B., Wu., Liang, H., 2010, Soot oxidation via CuO doped $CeO_2$ catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis, Appl. Catal. A., 153 125-132.
  8. Lee, Y. N., R. M. Lago, J. L. G. Fierro, Cortes, V., Sapina, F., Martinez. E., 2001, Surface properties and catalytic performance for ethane combustion of La1-$xKxMnO_3$ perovskites, Appl. Catal. A., 207 17-24. https://doi.org/10.1016/S0926-860X(00)00610-4
  9. Teraoka, Y., Nakano, K., Shangguan. W., Kagawa. S. 1996, Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides, Catal. Surv. JPN, 2 155-164.
  10. Fawie, L., Zhihua, W., Qiang, M, Yong, H., Whiddon, R., Zhu, Y., Liu, J., 2016, $N_2O_5$ Formation Mechanism during the Ozone-Based Low Temperature Oxidation $deNO_x$ Process, Energy & Fuel, 30 5101-5107. https://doi.org/10.1021/acs.energyfuels.6b00824