Browse > Article

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification  

NA BYUNG KWAN (Department of Biological Engineering, Seokyeong University)
SANG BYUNG IN (Division of Water Environment and Remediation, KIST)
PARK DAE WON (Division of Water Environment and Remediation, KIST)
PARK DOO HYUN (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1221-1228 More about this Journal
Abstract
Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.
Keywords
Electrochemical oxidation potential; anodic biofilm media; cathodic biofilm media; bacterial denitrification; wastewater treatment;
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ahn, I.-S., M.-W. Kim, H.-J. La, K.-M. Choi, and J.-C. Kwon. 2003. Bacterial community composition of activated sludge relative to type and efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13: 15-21
2 Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711-745   DOI   ScienceOn
3 Dalton, H. M., L. K. Poulsen, P. Halasz, M. I. Angles, A. E. Goodman, and K. C. Marshell. 1994. Substratum-induced morphological changes in marine bacterium and their relevance to biofilm structure. J. Bacteriol. 176: 6900-6906   DOI
4 Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385- 393
5 Kemner, J. M. and J. G. Zeikus. 1994. Purification and characterization of membrane-bound hydrogenase from Methanosarcina barkeri MS. Arch. Microbiol. 161: 47-54   DOI   ScienceOn
6 Knowles, R. 1982. Denitrification. Microbial Rev. 46: 43-70
7 Kwon, H.-H., E. Y. Lee, K.-S. Cho, and H. W. Ryu. 2003. Benzene biodegradation using the polyurethane biofilter immobilized with Stenotrophomonas maltophilia T3-c. J. Microbiol. Biotechnol. 13: 70-76
8 Lee, Y. N., J. H. Lee, H. J. Cho, E. J. Shin, J. W. Park, and J. H. Park. 1999. Characterization for Campylobacter newly isolated from swine gastric mucosa. J. Microbiol. Biotechnol. 9: 778-783
9 Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Enivron. Microbiol. 65: 2912- 2917
10 Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
11 Ramsing, N. B., M. Kuhl, and B. B. Jorgensen. 1993. Distribution of sulfate-reducing bacteria, $O_2$, and $H_2S$ in photosynthetic biofilm determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 59: 3840- 3849
12 Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2003. Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509. J. Microbiol. Biotechnol. 13: 473-476
13 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
14 Kuhl, M. and B. B. Jorgensen. 1992. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol. 58: 1164-1174
15 Costerton, J. W., A. Lewandowski, D. DeBeer, D. E. Caldwell, D. R. Korber, and G. James. 1994. Biofilms, the customized micro niche. J. Bacteriol. 176: 2137-2142   DOI
16 Hongo, M. and M. Iwahara. 1979. Application of electroenergizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43: 2075-2081   DOI
17 Okabe, S., T. Itoh, H. Satoh, and Y. Watanabe. 1999. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 65: 5107-5116
18 Xu, K. D., P. S. Stewart, F. Xia, C. T. Huang, and G. A. Mcfeters. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64: 4035-4039
19 Smith, R. L., M. L. Ceazan, and M. H. Brooks. 1994. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl. Environ. Microbiol. 60: 1949-1955
20 Moller, S., D. R. Korber, G. M. Wolfaardt, S. Molin, and D. E. Caldwell. 1997. Impact of nutrient composition on a degradative biofilm community. Appl. Environ. Microbiol. 63: 2432-2438
21 Surya, A., N. Murthy, and S. Anita. 1994. Tetracyanoquinonedimethane (TCNQ) modified electrode for NADH oxidation. Bioelectrochem. Bioenerg. 33: 71-73   DOI   ScienceOn
22 Arnold, E. G., L. S. Clesceri, and A. D. Eaton (eds.). 1992. Standard Methods for the Examination of Water and Wastewater, 18th edition, pp. 4-87, pp. 4-89, pp. 5-9. Published by American Public Health Association, NW Washington, DC20005
23 Caldwell, D. E., D. R. Korber, and J. R. Lawrence. 1992. Confocal laser microscopy and digital image analysis in microbial ecology. Adv. Microb. Ecol. 12: 1-67
24 Moller, S., A. R. Pederson, L. K. Poulsen, E. Arvin, and S. Molin. 1996. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62: 4632-4640
25 deBeer, D., A. Schramm, C. M. Santegoeds, and M. Kuhl. 1997. A nitrite microsensor for profiling environmental biofilms. Appl. Environ. Microbiol. 63: 973-977
26 Grotenhuis, J. T. C., M. Smit, C. M. Plugge, X. Yuansheng, A. A. M. van Lammeren, A. J. M. Stams, and J. B. Zchnder. 1991. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 57: 1942-1949
27 Isaacs, S., M. Henze, H. Soeberg, and M. Jummel. 1994. External carbon source addition as a means to control an activated sludge nutrient removal process. Wat. Res. 28: 511-520   DOI   ScienceOn
28 Lawrence, F. R., D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilm. J. Bacteriol. 173: 6558-6567   DOI
29 Teidje, J. M. 1998. Ecology of denitrification and dissimmilatory nitrate reduction to ammonium, pp. 179-244. In Zehnder, A. J. E. (ed.), Biology of Microorganisms. John Wiley & Sons, New York, U.S.A
30 Park, D. H. 1995. Reduction of benzothiophene by cytochrome C3 from Desulfovibiro desulfuricans M6 reduced by hydrogenase and by electrochemical method. Ph.D. Thesis, Korea University, Seoul, Korea
31 Wofaardt, G. M., J. R. Lawrence, R. D. Robarts, S. J. Caldwell, and D. E. Caldwell. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbiol. 60: 434-446
32 Stoodley, P., D. deBeer, and H. M. Lappin-Scott. 1977. Influence of electric fields and pH on biofilm structures as related to the bioelectric effect. Antimicrob. Agent. Chemother. 41: 1876-1879
33 James, G. A., D. R. Korber, D. F. Caldwell, and J. W. Costetton. 1995. Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J. Bacteriol. 177: 907-915   DOI
34 Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology. 4th Edition, pp. 371-382. Wileyllis. John Wiley and Sons, Inc. New York, U.S.A
35 Rodrigue, A., N. Batia, M. Muller, O. Fayet, R. Bohm, M. A. Mandrand-Berthelot, and L. F. Wu. 1996. Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli. J. Bacteriol. 178: 4453-4460   DOI