• Title/Summary/Keyword: Oxidation factor

Search Result 345, Processing Time 0.036 seconds

A Study of the Bituminous Coal Oxidation Factor in Large Scale Boilers for Estimating GHG Emissions

  • Lee, See-Hyung;Kim, Jin-Su;Lee, Jeong-Woo;Lee, Seung-Hee;Lee, Seong-Ho;Jeon, Eui-Chan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.189-195
    • /
    • 2011
  • Korea-specific GHG emissions should be estimated correctly in order to ensure effective measurement of climate change variables. The use of country-specific data that reflects fuel and technology characteristics is needed for accurate GHG emissions estimation. Oxidation factors are used to convert existing data into equivalent GHG emissions, and changes in these oxidation factors are directly related to changes in emissions. As such, the oxidation factor is one of the most important variables in using country-specific data to determine GHG emissions. In this study, the oxidation factor of bituminous coal in large scale boilers was estimated using 4,527 data points sampled from eight large-scale boilers that had been using bituminous coal for two years. The average oxidation factor was determined to be 0.997, which is lower than the oxidation factor of 1 that is recommended by the IPCC G/L for large scale boilers when estimating national GHG emissions. However, an oxidation factor less than 1 is assumed for fluidized bed boilers, internal combustion engines, and other small-scale boilers. Accordingly, studies on oxidation factor estimation should be continued to allow for accurate estimation of GHG emissions.

Formic Acid Oxidation Depending on Rotating Speed of Smooth Pt Disk Electrode

  • Shin, Dongwan;Kim, Young-Rae;Choi, Mihwa;Rhee, Choong Kyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.82-86
    • /
    • 2014
  • This work presents the variation of formic acid oxidation on Pt depending on hydrodynamic condition using a rotating disk electrode. As the rotating speed increases, the oxidation rate of formic acid decreases under voltammetric and chronoamperometric measurements. The coverages of poison formed from formic acid during the chronoamperomertric investigations decrease when the rotating speed increases. As the roughness factor of Pt electrode surface increases, on the other hand, the current density of formic acid oxidation increases. These observations are discussed in terms of the tangential flow along Pt electrode surfaces generated by the rotating disk electrode, which reduces a contact time between formic acid and a Pt site, thus the formic acid adsorption.

The Influence of Graphitic Structure on Oxidation Reaction of Carbon Materials (탄소재료의 산화반응에 미치는 흑연구조의 영향)

  • ;Eiichi Yasuda
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.816-822
    • /
    • 1996
  • Dependence of graphitic structure on oxidation of carbon materials was discussed using furan resin-derived carbon with inorganic compounds such as SiC and TiO2 Oxidation of carbon was governed by active site. I. e surface area regardless of the degree of graphitization. When oxidation was considered for not unit weight but unit area graphitization was important factor for oxidation so that the degree of graphitization increased the oxidation rate was delayed. Graphite (tiO2 addition) and turbostratic graphite(SiC addition) were oxidized through the same mechanism. In carbon materials with different structure components more than 2 oxidation of each component was different and amorphous component without the influence of additives on the surface was selectively oxidized in the intial oxidation stage.

  • PDF

A Study on the Manganese Oxidation and Characteristics of Aeromonas sp (Aeromonas sp. MN44의 특성과 망간 산화에 관한 연구)

  • Koo Jong Seo;Park Kyeong Ryang
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.94-99
    • /
    • 2005
  • Sixty four bacterial colonies which were able to oxidize the manganese were isolated from soil samples in Mokcheon and Ochang area. Among them, one bacterial strain was selected for this study based on its higher manganese oxidation, and this selected bacterial strain was identified as Aeromonas sp. MN44 through physiological-biochemical test and analysis of its 16s rRNA sequence. Aeromonas sp. MN44 was able to utilize lactose but did not utilize various carbohydrates as a sole carbon source. Aeromonas sp. MN44 showed a very sensitive to antibiotics such as kanamycin, chloramphenicol, ampicillin, tetracycline and spectinomycin, and heavy metal such as cadmium. But this strain showed a high resistance up to mg/ml unit to heavy metals such as lithium and manganese. Optimal manganese oxidation condition of Aeromonas sp. MN44 was pH 7.4 and manganese oxidation activity was inhibited by proteinase K and boiling treatment. So, we concluded that this factor was protein. The manganese oxidizing factor produced by Aeromonas sp. MN44 was partial purified by ammonium sulfate precipitation, DEAE-Toyopearl 650M ion exchange chromatography and Sephadex gel filtration chromatography. Its molecular mass was about 113 kDa.

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun;Ahn, Sang Hyun;Pyo, Sung Gyu;Son, Hyungbin;Jang, Jong Hyun;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2685-2690
    • /
    • 2013
  • The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.445-453
    • /
    • 2007
  • The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

Zricaloy-4 Oxidation Kinetics in High-Pressure High-Temperature Steam and Application to Accident Analysis (고압 고온 수증기에서 지르칼로이-4 산화반응 정량화 및 사고해석에의 응용)

  • 박광헌
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.363-370
    • /
    • 2002
  • Empirical equations for the oxide thickness and the weight gain of Zircaloy-4 cladding during the oxidation in high temperature, high pressure steam have been developed. Firstly, the empirical equations for oxide thickness in 1 atm steam in 700~100$0^{\circ}C$ were made, then, the enhancement factor for the steam pressure effects on Zircaloy-4 cladding oxidation in high temperature steam was added. Based on the analysis of the weight fraction of dissolved oxygen in metal layer, empirical equations for the weight gain of Zircaloy-4 in high pressure, high temperature steam were developed. We compare the developed empirical equations with the Baker-Just correlation. The Baker-Just correlation can give a non-conservative estimation of oxidation of Zircaloy-4, depending on the steam pressure. These developed empirical equations can be used for the correct estimation of oxidation of Zircaloy-4 during accident analysis.

Oxidation Kinetics of $UO_2$ Pellets in Defective Fuel Rods and Its Effect on Fission Gas Release (노내 손상 핵연료의 산화거동 및 핵연료 산화가 핵분열기체 방출에 미치는 효과)

  • Koo, Yang-Hyun;Sohn, Dong-Seong;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.90-99
    • /
    • 1994
  • One of the major phenomena occurring in defective fuel rods is the oxidation of UO$_2$ fuel pellets from UO$_2$ to UO$_{2+}$x/ by the oxygen Produced from the dissociation of the steam in the Pellet-to-clad gap, which leads to the enhancement of fission gas release. In this paper, the oxidation kinetics of defective fuel rods was analyzed on the basis of operating conditions of the reactor and defective fuel rod itself. Oxidation kinetics of the fuel pellet was determined under the assumption that the gap is filled with the saturated steam of 150 atm and an enhancement factor for fission gas release was introduced to take into account the effect of fuel oxidation on fission gas release. Comparison with experimental data shows that the enhancement factor predicts well the increased fission gas release due to the oxidation of UO$_2$fuel pellets.

  • PDF

Comparison of Land Farming and Chemical Oxidation based on Environmental Footprint Analysis (환경적 footprint 분석을 통한 토양경작법과 화학적산화법의 비교)

  • Kim, Yun-Soo;Lim, Hyung-Suk;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.7-14
    • /
    • 2015
  • In this study, land farming and chemical oxidation of a diesel-contaminated site is compared to evaluate the environmental impact during soil remediation using the Spreadsheet for Environmental Footprint Analysis by U.S. EPA. Each remediation process is divided into four phases, consisting of soil excavation, backfill and transportation (Phase 0), construction of remediation facility (Phase 1), remediation operation (Phase 2), and restoration of site and waste disposal (Phase 3). Environmental footprints, such as material use, energy consumption, air emission, water use and waste generation, are analyzed to find the way to minimize the environmental impact. In material use and waste generation, land farming has more environmental effect than chemical oxidation due to the concrete and backfill material used to construct land farming facility in Phase 1. Also, in energy use, land farming use about six times more energy than chemical oxidation because of cement production and fuel use of heavy machinery, such as backhoe and truck. However, carbon dioxide, commonly considered as important factor of environmental impact due to global warming effect, is emitted more in chemical oxidation because of hydrogen peroxide production. Water use of chemical oxidation is also 2.1 times higher than land farming.

Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air (CrAlMgSiN 박막의 600-900℃에서의 대기중 산화)

  • Won, Seong-Bin;Xu, Chunyu;Hwang, Yeon-Sang;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF