Browse > Article
http://dx.doi.org/10.5229/JECST.2014.5.3.82

Formic Acid Oxidation Depending on Rotating Speed of Smooth Pt Disk Electrode  

Shin, Dongwan (Department of Chemistry, Chungnam National University)
Kim, Young-Rae (Gruaduate School of Analytical Science and Technology, Chungnam National University)
Choi, Mihwa (Future Technology Research Laboratory, Korea Electric Power Corporation (KEPCO) Research Institute)
Rhee, Choong Kyun (Department of Chemistry, Chungnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.5, no.3, 2014 , pp. 82-86 More about this Journal
Abstract
This work presents the variation of formic acid oxidation on Pt depending on hydrodynamic condition using a rotating disk electrode. As the rotating speed increases, the oxidation rate of formic acid decreases under voltammetric and chronoamperometric measurements. The coverages of poison formed from formic acid during the chronoamperomertric investigations decrease when the rotating speed increases. As the roughness factor of Pt electrode surface increases, on the other hand, the current density of formic acid oxidation increases. These observations are discussed in terms of the tangential flow along Pt electrode surfaces generated by the rotating disk electrode, which reduces a contact time between formic acid and a Pt site, thus the formic acid adsorption.
Keywords
Formic acid; Platinum; Rotating disk electrode; Poison; Roughness factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Feliu, E. Herrero, in Handbook of Fuel Cells-Fundamentals Technology and Applications, W. Vielstich, A. Lamm, H.A. Gasteiger (Eds.), Vol. 2, John Wiley & Sons Ltd., New York (2003), Ch. 42.
2 J. Clavilier, A. Fernandez-Vega, J. M. Feliu and A. Aldaz, J. Electroanal. Chem., 258, 89 (1989).   DOI   ScienceOn
3 J. Clavilier, A. Fernandez-Vega, J. M. Feliu and A. Aldaz, J. Electroanal. Chem., 261, 113 (1989).   DOI   ScienceOn
4 B.-J. Kim, K. Kwon, C. K. Rhee, J. Han and T.-H. Lim, Electrochim. Acta, 53, 7744 (2008).   DOI   ScienceOn
5 C. Jung, T. Zhang, B-J. Kim, J. Kim, C. K. Rhee and T.-H. Lim, Bull. Kor. Chem. Soc., 31, 1543 (2010).   DOI   ScienceOn
6 J. Kim and C.K. Rhee, Electrochem. Comm., 12, 1731 (2010).   DOI   ScienceOn
7 T.J. Schmidt and H.A. Gasteiger, in Handbook of Fuel Cells-Fundamentals Technology and Applications, W. Vielstich, A. Lamm, H. A. Gasteiger (Eds.), Vol. 2, John Wiley & Sons Ltd., New York (2003), Ch. 22.
8 A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (2nd Ed.), John Wiley & Sons, Inc., New York (2001), Ch. 9.
9 D. Zurawski, L. Rice, M. Hourani and A. Wieckowski, J. Electroanal. Chem., 230, 221(1987).   DOI   ScienceOn
10 M. Wasberg, L Palaikis, S. Wallen, M. Kamrath and A. Wieckowski, J. Electroanal. Chem., 256, 51 (1988).   DOI   ScienceOn
11 R. Parsons and T. Vandernoot, J. Electroanal. Chem., 257, 9 (1988).   DOI   ScienceOn
12 E. Herrero, A. Fernandez-Vega, J. M. Feliu and A. Aldaz, J. Electroanal. Chem., 350, 73 (1993).   DOI   ScienceOn