• Title/Summary/Keyword: Oxidation Number Method

Search Result 78, Processing Time 0.022 seconds

A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process (LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구)

  • 강현욱;권현옥;송요승
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

Basic Studies on Deodorization Management of the Efflux From Swine Slurry Treated by the Thermophilic Aerobic Oxidation(TAO) Reactor (고온호기산화법으로 처리된 양돈분뇨 배출액의 무취화 관리방안에 관한 기초 연구)

  • 이명규;허재숙;태민호;정진영;권오중
    • Journal of Animal Environmental Science
    • /
    • v.5 no.2
    • /
    • pp.123-132
    • /
    • 1999
  • This study was carried out to find deodorization management method of the efflux from swine slurry treated by thermophilic aerobic oxidation reactor. Three kinds of deodorization methods in Lab-scale reactors, were used in this experiment; No treatment, air injection treatment(50$m\ell$ air/min. $\ell$) and inoculumn of photrophic bacteria treatement(108 cell(Most probable number, MPN)/$m\ell$). The concentration of volatile fatty acids(VFAs), hydrogen sulfide(H2S), and ammonia(NH3) were analyzed during the treatment period(50 days). The major results obtained as follows. 1. Air injection method to efflux showed very high removal effect on malodorants such as VFAs, hydrogen sulfide(H2B). But ammonia(NH3) was emitted to much. 2. PTB inoculum method was also effective in removal of malodorants, VFAs, Hydrogen sulfide(H2S), when it was applied to the efflux. 3. We found that the concentrations of malodorants, VFAs, H2S, NH3 had some relatinships with the pH, ORP, BOD in the efflux.

QUICK DETERMINATION OF MEAT COLOR, METMYOGLOBIN FORMATION AND LIPID OXIDATION IN BEEF, PORK AND CHICKEN BY NEAR-INFRARED SPECTROSCOPY

  • Mitsumoto, Mitsuru;Sasaki, Keisuke;Murakami, Hitoshi
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1259-1259
    • /
    • 2001
  • Meat becomes brown and rancid during storage in the refrigerator and display in the case. Color changes, metmyoglobin formation and lipid oxidation are the important problems in the transportation / distribution of meat and retail display. The freshness of meat is determined by the sense of vision and smell. Since conventional method determining lipid oxidation is time consuming and destructive (it needs to homogenize meat with reagents, filtrate, time for reaction and read optical density using spectroscopy), more rapid and nondestructive technical tools are desired. The objective of this work was to evaluate near-infrared spectroscopy as an analytical tool for determining meat color, metmyoglobin formation and lipid oxidation. in beef, pork and chicken. Semitendinosus and longissimus thoracis muscles from six beef steers, biceps femoris and longissimus thoracis muscles from twelve LWD crossbred pigs, and superficial pectoral muscles from twenty-four broilers were used. About a 5-cm diameter and 1-cm thick sample (20.0g) was cut from the muscle and placed on plastic foam, over-wrapped with PVC film, and displayed under flourescent lights at 4 degrees C. during 10 days for beef and pork or 4 days for chicken. The spectra was measured by NIR systems Model 5500 Spectrophotometer using fiber optic scan at range of 400 - 1100 nm. Data were recorded at 2 nm intervals and 10 scans / 10 sec were averaged for every sample. Data obtained were saved as log 1/Re, where Re is the reflectance energy, and then mathematically transformed to second derivatives to reduce effects of differences in particle size. $L^{*}$, $a^{*}$ and $b^{*}$, and metmyoglobin formation were determined by conventional spectrophotometer using the integrating sphere unit. 2-Thiobarbituric acid reactive substances (TBARS) were measured for lipid oxidation. A multiple linear regression was used to find the equation which would best fit the data. The number of wavelengths used in the equation was selected based on the fewer number compared to the increasing multiple correlation and Decreasing standard error. (omitted)

  • PDF

Anodic Oxide Films Formed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation Method in Electrolytes Containing Various NaF Concentrations

  • Moon, Sungmo;Kwon, Duyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • The present work was conducted to investigate the effects of NaF concentration in phosphate and silicate-containing alkaline electrolyte on the morphology, thickness, surface roughness and hardness of anodic oxide films formed on AZ31 Mg alloy by plasma electrolytic oxidation (PEO) method. The PEO films showed flat surface morphology with pores in the absence of NaF in the electrolyte, but nodular features appeared on the PEO film surface prepared in NaF-containing electrolyte. Numerous pores ranging from 1 to $20{\mu}m$ in size were observed in the PEO films and the size of pores decreased with increasing NaF concentration in the electrolyte. Surface roughness and thickness of PEO films showed increases with increasing NaF concentration. Hardness of the PEO films also increased with increasing NaF concentration. It was noticed that hardness of inner part of the PEO films is lower than that of outer part of them, irrespective of the concentration of NaF. The low hardness of PEO films was explained by the presence of a number of small size pores less than $2{\mu}m$ near the PEO film/substrate interface.

Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater (난분해성 산업폐수 처리를 위한 고도산화기술)

  • Kim, Min Sik;Lee, Ki-Myeong;Lee, Changha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.445-462
    • /
    • 2020
  • Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Jang, Hyun-Tae;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.537-544
    • /
    • 2011
  • This work was conducted to investigate the oxidation characteristics of methane having the highest ignition temperature among the other hydrocarbon gases using transition metal catalysts. The catalyst used for methane oxidation was manganese oxide having a various oxidation number, such as MnO, $MnO_2$, $Mn_2O_3$, $Mn_3O_4$, $Mn_4O_5$. The manganese oxide(MnxOy) catalyst is impregnated on $TiO_2$, $Al_2O_3$ for methane oxidation. To enhanced both of activity and life time of catalysts, Ni and Co was used as a promoter. In this study, various co-catalysts were synthesized by using excess wet impregnation method. The effect of reaction temperature and space velocity was measured to calculate the activity of catalysts such as, activation energy of $T_{50}$, and $T_{90}$. The life time of bi-metallic manganese mixture, such as Mn-Co and Mn-Ni catalysts, were increased more 10 % than manganese oxide catalyst, but activity of those was decreased slightly.

Effect of Amine-Based Antioxidants as Stabilizers for Biodiesel (바이오디젤용 산화방지제인 아민안정제들의 효과)

  • Park, Soo-Youl;Kim, Hun-Soo;Kim, Seung-Hoi
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2015
  • Biodiesel is an environmentally-friendly fuel with low smoke emission because it contains about 10% oxygen. Biodiesel fuel prepared by transesterification of vegetable oil or animal fats is susceptible to auto-oxidation. The rate of auto-oxidation depends on the number of methylene double bonds contained within the fatty acid methyl or ethyl ester groups. Biodiesel may be easily oxidized under several conditions, i.e., upon exposure to sunlight, temperature, oxygen environment. Maintenance of the fuel quality of biodiesel requires the development of technologies to increase the resistance of biodiesel to oxidation. Treatment with antioxidants is a promising approach for extending the shelf-life or storage time of biodiesel. The chemical properties of various amine-based antioxidants were evaluated after synthesis of the antioxidants by condensation of phenylenediamine with alkylamines at room temperature. In general, the oxidative stability can be assessed based on various experimental parameters. Such parameters may include temperature, pressure, and the flow rate of air through the samples. The Rancimat method (EN14112) was selected because it is a rapid technique that requires very little sample and provides good precision for oxidative degradation analysis. Specifically, the EN 14112 technique provides enhanced efficiency for oxidative stability evaluation when a larger ester head group is utilized. Therefore, this technique was employed for evaluation of the oxidation stability of biodiesel by the Rancimat method (EN14112).

Electro-Catalytic Behavior of an Antiarrhythmic Drug, Procainamide and its Electro-Analytical Applications

  • Abbar, Jyothi C.;Meti, Manjunath D.;Nandibewoor, Sharanappa T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.292-300
    • /
    • 2018
  • The electrocatalytic oxidative behavior of an antiarrhythmic drug, procainamide hydrochloride (PAH) at the gold electrode surface has been examined using different voltammetric methods like cyclic, linear-sweep and differential pulse voltammetry. Voltammograms obtained in this study reveal that the electrode exhibit excellent electrocatalytic activity towards oxidation of the drug. The parameters that can affect the peak current at different pH, scan rate and concentration were evaluated. The number of electrons transferred was calculated. The current displayed a wide linear response ranging from 0.5 to $30.0{\mu}M$ with a limit of detection of 56.4 nM. The impact of potential interfering agents was also studied. The electrode displayed wide advantages such as simple sample preparation, appreciable repeatability, reproducibility and also high sensitivity. Furthermore, the feasibility of the proposed method was successfully demonstrated by determining PAH in the spiked human biological sample.

A Study on Surface Characteristics and Stability of Implants Treated with Anodic Oxidation and Fluoride Incorporation (양극 산화와 불소 화합물로 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Lim, Jae-Bin;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.349-365
    • /
    • 2006
  • State of problem : A number of investigation about increase of surface area via various surface treatments and modification of surface constituent have been carried out. Purpose : The surface characteristics and stability of implants treated with anodic oxidation, fluoride ion incorporation, and groups treated with both methods were evaluated. Material and method : Specimens were divided into six groups, group 1 was the control group with machined surface implants, groups 2 and 3 were anodic oxidized implants (group 2 was treated with 1M $H_2SO_4$ and 185V, group 3 was treated with 0.25M $H_2SO_4$ and $H_3PO_4$ and 300V). Groups 4, 5 and 6 were treated with fluoride. Group 4 was machined implants treated with 0.1% HF, and groups 5 and 6 were groups 2 and 3 treated with 10% NaF respectively. Using variable methods, implant surface characteristics were observed, and the implant stability was evaluated on rabbit tibia at 0, 4, 8 and 12 weeks. Result : 1. In comparison of the surface characteristics of anodic oxidized groups, group 2 displayed delicate and uniform oxidation layer with small pore size containing Ti, C, O and showed mainly rutile, but group 3 displayed large pore size and irregular oxidation layer with many crators. 2. In comparison of the surface characteristics of fluoride treated groups 4, 5, 6 and non-fluoride treated groups 1, 2, 3, the configurations were similar but the fluoride treated groups displayed rougher surfaces and composition analysis revealed fluoride in groups 4, 5, 6. 3. The fluoride incorporated anodic oxidized groups showed the highest resonance frequency values and removal torque values, and the values decreased in the order of anodic oxidized groups, fluoride treated group, control group. 4. According to implant stability tests, group 2 and 3 showed significantly higher values than the control group (P<.05). The fluoride treated groups showed relatively higher values than the non fluoride treated groups and there were significant difference between group 4 and group 1 (P<.05). Conclusion : From the results above, it can be considered that the anodic oxidation method is an effective method to increase initial bone stability and osseointegration and fluoride containing implant surfaces enhance new bone formation. Implants containing both of these methods should increase osseointegration, and reduce the healing period.

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF