DOI QR코드

DOI QR Code

Electro-Catalytic Behavior of an Antiarrhythmic Drug, Procainamide and its Electro-Analytical Applications

  • Abbar, Jyothi C. (Sri Venkateshwara College of Engineering) ;
  • Meti, Manjunath D. (College of Life Sciences and Oceanography, Shenzhen University) ;
  • Nandibewoor, Sharanappa T. (P. G. Department of Studies in Chemistry, Karnatak University)
  • Received : 2018.06.05
  • Accepted : 2018.07.31
  • Published : 2018.12.31

Abstract

The electrocatalytic oxidative behavior of an antiarrhythmic drug, procainamide hydrochloride (PAH) at the gold electrode surface has been examined using different voltammetric methods like cyclic, linear-sweep and differential pulse voltammetry. Voltammograms obtained in this study reveal that the electrode exhibit excellent electrocatalytic activity towards oxidation of the drug. The parameters that can affect the peak current at different pH, scan rate and concentration were evaluated. The number of electrons transferred was calculated. The current displayed a wide linear response ranging from 0.5 to $30.0{\mu}M$ with a limit of detection of 56.4 nM. The impact of potential interfering agents was also studied. The electrode displayed wide advantages such as simple sample preparation, appreciable repeatability, reproducibility and also high sensitivity. Furthermore, the feasibility of the proposed method was successfully demonstrated by determining PAH in the spiked human biological sample.

Keywords

References

  1. R. Peter Kowey, Arch Intern Med., 1998, 158(4), 325-332. https://doi.org/10.1001/archinte.158.4.325
  2. R. Valdes Jr., S. A. Jortani, M. Gheorghiade, Clin. Chem., 1998, 44(5), 1096-1109.
  3. E. Osadchii Oleg, Fundam. Clin. Pharmacol., 2014, 28(4), 382-393. https://doi.org/10.1111/fcp.12046
  4. G. W. Zamponi, Biophys. J., 1993, 65(6), 2324-2334. https://doi.org/10.1016/S0006-3495(93)81291-8
  5. K. Takashi, F. Katsushi, Y. Syoichi, G. Yutaka, Anal. Chim. Acta, 1995, 312(1), 35-38. https://doi.org/10.1016/0003-2670(95)00196-7
  6. L. Nugbienyoa, Y. Malininab, S. Garmonova, M. Kamencevb, I. Salahova, V. Andruchc, L. Moskvinb, A. Bulatovb, Talanta, 2017, 67, 709-713.
  7. R. P. Kozak, C. B. Tortosa, D. L. Fernandes, D. I. R. Spencer, Anal. Biochem., 2015, 486, 38-40. https://doi.org/10.1016/j.ab.2015.06.006
  8. S. Klapoetke, J. Zhang, S. Becht, X. Gu, X. Ding, J. Pharm. Biomed. Anal., 2010, 53(3), 315-324. https://doi.org/10.1016/j.jpba.2010.03.045
  9. J. E. Romero, A.M. Dominguez, J.V. Marcos-Tomas, E. Ochoa-Aranda, M. Rambla-Alegre, Chromatographia, 2010, 71(3), 273-277. https://doi.org/10.1365/s10337-009-1467-3
  10. H. F. Proelss, T. B. Townsend, Clin. Chem., 1986, 32(7), 1311-1317.
  11. J. Esteve-Romero, J. Albiol-Chiva, J. Peris-Vicente, Anal. Chim. Acta, 2016, 926, 1-16. https://doi.org/10.1016/j.aca.2016.04.026
  12. H. M. Azzazy, P. P. Chou, A. Poklis, G. Shock, R. H. Christenson, Clin. Biochem. 1998, 31(1), 55-58. https://doi.org/10.1016/S0009-9120(97)00158-6
  13. G. Vargasa, J. Havela, E. Hadasova, J. Chromatogr. A, 1997, 772(1-2), 271-276. https://doi.org/10.1016/S0021-9673(97)00106-4
  14. L. Nugbienyo, A. Shishov, S. Garmonov, L. Moskvin, V. Andruch,A. Bulatov, Talanta, 2017, 168, 307-312. https://doi.org/10.1016/j.talanta.2017.03.057
  15. T. P. Gibson, A. J. Atkinson, J. R. Edward Matusik, L. D. Nelson, W. A. Briggs, Kidney Int., 1977, 12(6), 422-429. https://doi.org/10.1038/ki.1977.133
  16. M. D. Meti, M. H. Lamani, A. G. Naikar, S. S. Sutar, S. T. Nandibewoor, S. A. Chimatadar, Monatsh Chem, 2015, 146(9), 1485-1493. https://doi.org/10.1007/s00706-015-1410-2
  17. J. E. Parkin, K. F. Ilett, Eur. J. Pharm. Biopharm, 1997, 43(2), 139-143. https://doi.org/10.1016/S0939-6411(96)00034-3
  18. K. Byadagi, M. Meti and S. Nandibewoor, S. Chimatadar, J. Pharm. Anal., 2017, 7(2), 103-109. https://doi.org/10.1016/j.jpha.2016.07.004
  19. S. Al-Tamrah, S. Al-Abbad, Arabian J. Chem., 2015, 8(5), 609-613. https://doi.org/10.1016/j.arabjc.2012.02.004
  20. K. Kaczmarska, M. Brycht, A. Leniart, S. Skrzypek, RSC Adv., 2017, 7(42), 26028-26036. https://doi.org/10.1039/C7RA00407A
  21. W. Hussein, E. Bishop, D. Waqar, Pak. J. Pharm. Sci., 2013, 26(5), 977-984.
  22. K. Wang, X. Guan, S. Chai, Q. Zou, X. Zhang, J. Zhang, Biosens. Bioelectron., 2015, 64, 94-101. https://doi.org/10.1016/j.bios.2014.08.053
  23. M. D. Meti, J. C. Abbar S. T. Nandibewoor, S. A. Chimatadar, Anal. Chem. Lett., 2016, 6(3), 193-204. https://doi.org/10.1080/22297928.2016.1196606
  24. G. D. Christian, W. C. Purdy, J. Electroanal. Chem., 1962, 3(6), 363-367. https://doi.org/10.1016/0022-0728(62)80012-6
  25. K. Kaczmarska, M. Brycht, A. Leniart, S. Skrzypek, RSC Adv., 2017, 7(42), 26028-26036. https://doi.org/10.1039/C7RA00407A
  26. J. C. Abbar, M. D. Meti, S. T. Nandibewoor, Z. Phy. Chem., 2017, 231(5), 957-970.
  27. J. C. Abbar, S. T. Nandibewoor, Colloids Surf B, 2013, 106, 158-164. https://doi.org/10.1016/j.colsurfb.2013.01.045
  28. D. K. Gosser, Cyclic voltammetry: Simulation and analysis of reaction mechanisms, New York, Wiley-VCH, 1993.
  29. E. Laviron, J. Electroanal. Chem., 1979, 101(1), 19-28. https://doi.org/10.1016/S0022-0728(79)80075-3
  30. C. Li, Colloids Surf. B, 2007, 55(1), 77-83. https://doi.org/10.1016/j.colsurfb.2006.11.009