• Title/Summary/Keyword: Oxic phase

Search Result 10, Processing Time 0.03 seconds

Characteristics of Nutrient Removal with Variation of the Anoxic-Oxic Phase Repetition in Sequencing Batch Reactor Process (SBR공정의 무산소-호기 구간반복에 따른 영양염류 제거 특성)

  • Lee, Jaekune;Yim, Soobin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • This study was performed to investigate the characteristics of nutrient removal by Sequencing Batch Reactor (SBR) system, which could achieve high removal efficiencies of nitrogen and phosphorus and make it possible convenient management and operation. In this study, dissolved oxygen (DO), chemical oxygen demand (COD), nitrogen, and phosphorus in SBR system were examined by variation of anoxic-oxic phase repetition in order to optimize an operational method. The 1~4 times of anoxic-oxic phases (Run 1~4) were repeated during 1 cycle operation period. As the repetition frequency increased, it was more difficult to maintain DO condition enough for denitrification. The SBR system showed high COD removal efficiency more than 91% regardless of operational condition. About 68% of nitrogen removal rate was obtained in conditions of 2 or 3 times repetition of anoxic phases, in which NOx-N among discharged total nitrogen account for more than 99%. Approximately 40% of phosphorus was eliminated in the conditions of 1~3 times of anoxic phase repetition.

  • PDF

A Study on the Organic, Nitrogen and Phosphorus Removal in (AO)$_2$ SBR and $A_2O$ SBR ((AO)$_2,$ SBR과 $A_2O$ SBR의 유기물, 질소 및 인의 제거에 관한 연구)

  • Park Young-Seek;Woo Hyung-Taek;Kim Dong-Seog
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.340-348
    • /
    • 2005
  • Laboratory scale experiments were conducted to compare the performance of two types of sequencing batch reactor(SBR) systems, anoxic-oxic-anoxic-oxic $((AO)_2)$ SBR and anoxic-oxic-anoxic $(A_2O)$ SBR on the biological nitrogen and phosphorus removal. Also, the profiles of DO and pH in reactors were used to monitor the biological nutrient removal in two SBRs. The break point in the pH and DO curves at the oxic period coincided with the end of nitrifying activity at about 1 h 30 min in oxic phase, and the change in pH appears to be related to nitrate concentration. The TOC removal efficiency in $A_2O$ SBR was higher than that in $(AO)_2$ SBR. The denitrification was completed at the influent period. The 2nd non-aeration and aeration periods were not necessary for the nitrogen and phosphorus removal because of the low influent TOC concentration in this study. The release and uptake of phosphorus in $AO_2$ SBR was much higher than that in $(AO)_2SBR.$ In order to uptake more phosphorus, the 1st aeration period in $A_2O$ SBR should be prolonged.

Nitrogen Removal and Behavior of Soluble Microbial Products (SMP) in the MBR Process with Intermittent Aerobic Condition

  • Cha, Gi-Cheol;Myoung Hwang
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • A lab-scale submerged membrane bio-reactor (MBR) with intermittent aeration was carried out for investigating the behavior of soluble microbial products (SMP). The SMP concentration of mixed liquor at Run 1 accumulated immediately at the end of running and biodegradable SMP converted into non-biodegradable SMP, but it did not occurred at the Run 2 and 3. The SMP formation coefficient (k) at the anoxic phase was a little higher than oxic phase, and the lowest k was investigated at Run 3. The combination of biological denitrification with the MBR Process was advantageous in the prevention of membrane bio-fouling.

  • PDF

Shifts in Biochemical Environments and Subsequent Degradation of Explosive Compounds (TNT and RDX) by Starch Ball Addition in the Benthic Zone of Bench Scale Settling Basins (전분 환 투입에 의한 실험실 규모 침전지 저부에서의 생화학적 환경 변화와 화약물질(TNT 및 RDX) 분해)

  • Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.82-93
    • /
    • 2014
  • A starch ball was devised to conveniently supply carbon source to indigenous microorganisms and to enhance biotransformation of explosive compounds(TNT and RDX) in the sediments of settling basins installed in military shooting ranges. To identify optimum dose/sediment ratio for degradation of explosives in the basin, a series of bench scale settling basin experiments were performed for 30 days while monitoring supernatant pH, DO, concentrations of nitrite, nitrate, sulfate, explosive compounds, and acute toxicity measured by bacterial luminescence. Addition of starch ball induced changes in oxidation conditions from oxic to anoxic in the benthic zone of the basin, which resulted in subsequent reductive degradation of both TNT and RDX in the liquid and solid phase of basin. However, fermentation products of excess starch, acetic acid and formic acid, caused acute toxicity in the liquid phase. The optimum ratio of starch ball/sediment for explosive compounds degradation by inducing changes in bio-geochemical environments without increase in acute toxicity, was found to be 0.009~0.017.

Effects of Salinity, Temperature and Food Type on the Uptake and Elimination Rates of Cd, Cr, and Zn in the Asiatic Clam Corbicula fluminea

  • Lee, Jung-Suk;Lee, Byeong-Gweon
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2005
  • Laboratory radiotracer experiments were conducted to determine assimilation efficiencies (AE) from ingested algal food and oxic sediment particles, uptake rates from the dissolved phase, and the efflux rates of Cd, Cr and Zn in the Asiatic clam Corbicula fluminea. Among three elements, AE from both algal and sediment food was greatest for Cd, followed by Zn and Cr. The AEs of tested elements from algal food (Phaeodactylum tricornutum) were consistently higher than those from sediments at a given salinity and temperature. The influence of salinity (0, 4 and 8 psu) and temperature (5, 13 and $21^{\circ}C$) on the metal AEs was not evident for most tested elements, except Cd AEs from sediment. The rate constant of metal uptake from the dissolved phase $(k_u)$ was greatest for Cd, followed by Zn and Cr in freshwater media. However, in saline water, the $(k_u)$ of Zn were greater than those of Cd. The influx rate of all tested metals increased with temperature. The efflux rate constant was greatest for Cr $(0.02\;d^{-1})$, followed by Zn $(0.010{\sim}0.017\;d^{-1})$ and $Cd\;(0.006\;d^{-1})$. The efflux rate constant for Zn in clam tissues depurated in 0 psu $(0.017\;d^{-1})$ was faster than that in 8 psu $(0.010\;d^{-1})$. Overall results showed that the variation of salinity and temperature in estuarine systems can considerably influence the metal bioaccumulation potential in the estuarine clam C. fluminea. The relatively high Cd accumulation capacity of C. fluminea characterized by the high AE, high dissolved influx rate and low efflux rate, suggested that this clam species can be used as an efficient biomonitor for the Cd contamination in freshwater and estuarine environments.

Selenite Reduction to Elemental Selenium by Citrobacter Strain SE4-1 Isolated from a Stream Sediment (하천 퇴적토에서 분리한 Citrobacter strain SE4-1에 의한 아셀렌산염의 원소상 셀레늄으로의 환원)

  • Lee, Ji-Hoon;Cho, Ahyeon;Lee, Hyeri
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.146-149
    • /
    • 2018
  • BACKGROUND: Selenium is an essential element for all life forms but can be toxic above certain narrow levels. Prevalent forms of selenium in oxic environment are selenium oxyanions such as selenite and selenate, which may be contaminants in soils and water bodies. Bacterial reduction of more mobile selenium species (selenite or selenate) to less mobile elemental selenium may suggest a benign solution for alleviating toxicity and bioavailability of the selenium species. METHODS AND RESULTS: A facultative anaerobic bacterium, Citrobacter strain SE4-1 was isolated from the contaminated stream sediments and found to effectively reduce selenite to elemental selenium. Aqueous phase of selenite was analyzed by inductively couple plasma spectroscopy and the precipitated sphere-shaped elemental selenium was observed by transmission electron microscopy. CONCLUSION: The bacterial strain SE4-1 isolated in this study suggests a potential role in biogeochemical cycle of selenium by the selenite reduction in the stream environment, and potentials for biotechnological applications to reduceselenium concentrations in selenium-contaminated systems such as wastewater, soil, and groundwater.

Biological Nitrogen and Phosphorus Removal Characteristics on Organic Material and Nitrate Loadings in SBR Process (연속회분식반응조에서 유기물 부하와 질산염농도에 따른 생물학적 질소 및 인 제거 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Kim, Kwang-Soo;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.571-576
    • /
    • 2004
  • Since anaerobic/anoxic/oxic process, which is a typical mainstream biological nitrogen and phosphorus removal process, utilizes influent organic matter as an external carbon source for phosphorus release in anaerobic or anoxic stage, influent COD/T-P ratio gives a strong influence on performance of phosphorus removal process. In this study, a bench scale experiment was carried out for SBR process to investigate nitrogen and phosphorus removal at various influent COD/T-P ratio and nitrate loadings of 23~73 and 1.6~14.3g $NO_3{^-}-N/kg$ MLSS, respectively. The phosphorus release and excess uptake in anoxic condition were very active at influent COD/T-P ratios of 44 and 73. However, its release and uptake was not obviously observed at COD/T-P ratio of 23. Consequently, phosphorus removal efficiency was decreased. In addition, the phosphorus release and uptake rate in anoxic condition increased as the nitrate loading decreased. Specific denitrification rate had significantly high correlation with organic materials and nitrate loadings of the anoxic phase too. The rate of phosphorus release and uptake in the anoxic condition were $0.08{\sim}0.94kg\;S-P/kg\;MLSS{\cdot}d$ and $0.012{\sim}0.1kg\;S-P/kg\;MLSS{\cdot}d$, respectively.

Field Study on Application of Reactive Zone Technology Using Zero-Valent Iron Nanoparticles for Remediation of TCE-Contaminated Groundwater (TCE 오염 지하수의 정화를 위한 나노영가철 기반 반응존 공법의 현장 적용성 연구)

  • Ahn, Jun-Young;Kim, Cheolyong;Hwang, Kyung-Yup;Jun, Seong-Chun;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.80-90
    • /
    • 2014
  • The laboratory and field studies were conducted to identify an optimal injection concentration of nanoscale zero-valent iron particles (NZVI) and to evaluate the applicability of NZVI-based reactive zone technology to the site contaminated with trichloroethylene (TCE) DNAPL (Dense Non-Aqueous Phase Liquid). The laboratory test found an optimal injection concentration of NZVI of 5 g/L that could remove more than 95% of 0.15 mM TCE within 20 days. Eleven test wells were installed at the aquifer that was mainly composed of alluvial and weathered soils at a strong oxic condition with dissolved oxygen concentration of 3.50 mg/L and oxidation-reduction potential of 301 mV. NZVI of total 30 kg were successfully injected using a centrifugal pump. After 60 days from the NZVI injection, 86.2% of the TCE initially present in the groundwater was removed and the mass of TCE removed was 405 g. Nonchlorinated products such as ethane and ethene were detected in the groundwater samples. Based on the increased chloride ion concentration at the site, the mass of TCE removed was estimated to be 1.52 kg. This implied the presence of DNAPL TCE which contributed to a higher estimate of TCE removal than that based on the TCE concentration change.

Influence of Sulfate on Thermodynamic Modeling of Hydration of Alkali Activated Slag (알칼리 활성 슬래그의 열역학적 수화모델링에 대한 황산염의 영향)

  • Lee, Hyo Kyoung;Park, Sol-Moi;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • The present study investigated hydration of alkali activated slag incorporating sulfate as a form of anhydrite by employing thermodynamic modeling using the Gibbs free energy minimization approach. Various parameters were evaluated in the thermodynamic calculations, such as presence of sulfide, precipitation/dissolution of AFt/AFm phase, and the effect of oxic condition on the predicted reaction. The calculations suggested no significant difference in the void volume and chemical shrinkage, which might influence the performance of the mixtures, in spite of various changes of the parameters. Although the types of hydration products and their amount varied according to the input conditions, their variations were smaller range than that induced by water-to-binder ratio. Moreover, it did not affect the amount of C-(N-)A-S-H which was the most important hydration product.

Characterization of Groundwater Quality and Recharge using Periodic Measurements of Hydrogeochemical Parameters and Environmental Tracers in Basaltic Aquifers of Jeju Island (수리지구화학적 인자와 환경 추적자의 주기적 관측에 의한 제주도 지하수의 수질과 함양 특성 분석)

  • Koh, Dong-Chan;Cheon, Su-Hyun;Park, Ki-Hwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.60-71
    • /
    • 2007
  • Groundwater from public wells was monitored during one year with two month interval for hydrogeochemical parameters and chlorofluorocarbons (CFCs) as environmental tracers in Jeju Island. Concentrations of major cations and $SiO_2$ show variation less than 10% whereas $NO_3$ and dissolved oxygen (DO) showed larger variation though DO variation did not change oxic or suboxic condition. $NO_3$ concentration has no consistent seasonal pattern with the largest variation of 35%. Groundwater ages determined by CFCs became temporarily younger by 5 years in October for groundwater with ages of 15 to 25 years, which can be attributed to infiltrating water in rainy season. Compared to air temperature, groundwater temperature has much smaller variation with no phase difference, which can be accounted for by a two-component model consisting of infiltrating water from surface and deeper groundwater with negligible temperature variation. The relatively small variation in groundwater age and temperature indicates that groundwater recharge through fast flow-paths is much smaller compared with basal groundwater in terms of aquifer storage.