Browse > Article
http://dx.doi.org/10.7857/JSGE.2014.19.3.082

Shifts in Biochemical Environments and Subsequent Degradation of Explosive Compounds (TNT and RDX) by Starch Ball Addition in the Benthic Zone of Bench Scale Settling Basins  

Park, Jieun (Department of Civil & Environmental Engineering, Gachon University)
Bae, Bumhan (Department of Civil & Environmental Engineering, Gachon University)
Publication Information
Journal of Soil and Groundwater Environment / v.19, no.3, 2014 , pp. 82-93 More about this Journal
Abstract
A starch ball was devised to conveniently supply carbon source to indigenous microorganisms and to enhance biotransformation of explosive compounds(TNT and RDX) in the sediments of settling basins installed in military shooting ranges. To identify optimum dose/sediment ratio for degradation of explosives in the basin, a series of bench scale settling basin experiments were performed for 30 days while monitoring supernatant pH, DO, concentrations of nitrite, nitrate, sulfate, explosive compounds, and acute toxicity measured by bacterial luminescence. Addition of starch ball induced changes in oxidation conditions from oxic to anoxic in the benthic zone of the basin, which resulted in subsequent reductive degradation of both TNT and RDX in the liquid and solid phase of basin. However, fermentation products of excess starch, acetic acid and formic acid, caused acute toxicity in the liquid phase. The optimum ratio of starch ball/sediment for explosive compounds degradation by inducing changes in bio-geochemical environments without increase in acute toxicity, was found to be 0.009~0.017.
Keywords
Biodegradation; Indigenous microorganisms; Starch ball; RDX; TNT;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Talmage, S.S., Opresko, D.M., Maxwell, C.J., Welsh, C.J.E., Cretella, F.M., Reno, P.H., and Daniel, B.F., 1999, Nitroaromatic munition mompounds: environmental effects and screening values, Rev. Environ. Contam. Toxicol., 161, 1-156.
2 Schackmann, A. and Muller, R., 1991, Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions, Appl. Microbiol. Biotechnol., 34, 809-813.
3 Sherburne, L.A., Shrout, J.D., and Alvarez, P.J.J., 2005, Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum, Biodegradation, 16, 539-547.   DOI
4 Singh, R., Soni, P., Kumar, P., Purohit, S., and Singh, A., 2009, Biodegradation of high explosive production effluent containing RDX and HMX by denitrifying bacteria, World J., Microbiol. Biotechnol., 25, 269-275.   DOI
5 US EPA, 2007, Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods, SW-846.
6 US EPA, 2012, 2012 Edition of the drinking water standards and health advisories, EPA 822-R-09-011. Office of Water, Washington, DC, USA, 6-7.
7 Zhao, J.-S., Greer, C.W., Thiboutot, S., Ampleman, G., and Hawari, J., 2004, Biodegradation of the nitramine explosives hexahydro-1,3,5- trinitro-1,3,5-triazine and octahydro-1,3,5,7- tetranitro-1,3,5,7- tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions, Can. J. Microbiol., 50, 91-96.   DOI
8 McCormick, N.G., Feeherry, F.E., and Levinson, H.S., 1976, Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds, Appl. Environ. Microbiol., 31, 949-958.
9 Livemore, J.A., Jin, Y.O., Arnseth, R.W., LePuil, M., and Mattes, T.E., 2013, Microbial community dynamics during acetate biostimulation of RDX-contaminated groundwater, Environ. Sci. Technol., 47, 7672-7678.   DOI
10 Hawari, J., Beaudet, S., Halasz, A., Thiboutot, S., and Ampleman, G., 2000, Microbial degrdation of explosives: biotransformation versus mineralization, Appl. Microbiol. Biotechnol., 54, 605-618.   DOI   ScienceOn
11 Manning, J.F., Boopathy, R., and Kulpa, C.F., 1994, A Laboratory Study in Support of the Pilot Demonstration of a Biological Soil Slurry Reactor, Argonne National Laboratory, SFIM-AECTS- CR-9408.
12 McCormick, N.G., Cornell, J.H., and Kaplan. A.M., 1981, Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine, Appl. Environ. Microbiol., 42, 817-823.
13 Ministry of Defense, 2002, Remedial Investigation and Counter Measure for Contaminants Spread in the Military Shooting Range.
14 Peters, G.T., Burton, D.T., Paulson, R.L., and Turley, S.D., 2009, The acute and chronic toxicity of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) to three freshwater invertebrates, Environ. Tox. Chem., 10(8), 1073-1081.
15 Muter, O., Potapova, K., Limane, B., Sproge, K., Jakobsone, I., Cepurnieks, G., and Bartkevics, V., 2012, The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil, J. Environ. Manage., 98, 51-55.   DOI   ScienceOn
16 Pallazo, A.J. and Leggett D.C., 1986, Effect and Disposition of TNT in a terrestrial plant, J. Environ. Qual., 15, 49-52.
17 Park, S.H., Bae, B., Kim, M., and Jang, Y.Y., 2008, Distribution and behavior of mixed contaminants, explosives and heavy metals, at a small scale military shooting range, J. KSWQ, 24(5), 523-532.
18 Han, G.B. and Clarkson, W.W., 1996, Removal of TNT and biotransformation products under sequential anaerobic/denitrifying conditions, Enviorn. Eng. Res., 1(1), 73-79.
19 Davis, L., Wani, A.H., OiNeal, B.R., and Hansen, L.D., 2004, RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater, J. Hazard. Mater., B112, 45-54.
20 Freedman, D.L. and Sutherland, K.W., 1998, Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitratereducing conditions, Water Sci. Technol., 38(7), 33-40.
21 Funk S.B., Roberts, D.J., Crawford, D.L., and Crawford, R.L., 1993, Initial phase optimization for bioremediation of munition compound contaminated soils, Appl. Environ. Microbiol., 59, 2171-2177.
22 Lewis, T.A., Goszczynski, Crawford, R.L., Korus, R.A., and Admassu, W., 1996, Products of anaerobic 2,4,6-trinitrotoluene( TNT) transformation by Clostridium bifermentans, Appl. Environ. Microbiol., 62, 4669-4674.
23 Boopathy, R., Gurgas, M., Ullian, J., and Manning, J.F., 1998, Metabolism of explosive compounds by sulfate-reducing bacteria, Current Microbiology, 37(2), 127-131.   DOI
24 Bradley, P.M. and Chapelle, F.H., 1995, Factors affecting microbial 2,4,6-mineralization in contaminates soil, Environ. Sci. Technol., 29(3), 802-806.   DOI   ScienceOn
25 Boopathy, R., 2000, Bioremediation of explosives contaminated soil, Int. Biodeter. Biodegr., 46, 29-36.   DOI   ScienceOn
26 Boopathy, R. and Kulpa, C.F., 1993, Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (strain B), Can. J. Microbiol., 42, 1203-1208.
27 Bruns-Nagel, D., Breitung, J., von Low, E., Steinbach, K., Gorontzy, T., Kahl, M., Blotevogel, K.-H., and Gemsa, D., 1996, Microbial transformation of 2,4,6-Trinitrotoluene in aerobic soil columns, Appl. Environ. Microbiol., 62, 2651-2656.
28 Bruns-Nagel, D., Scherrer, S., Casper, B., Garn, H., Drzyzge, O., von Low, E., and Gemsa, D., 1999, Effect of 2,4,6-trinitrotoluene and its metabolites on human monocytes, Environ. Sci. Technol., 33, 2566-2570.   DOI   ScienceOn
29 Adrian, N.R., Arnett, C.M., and Hickey, R.F., 2003, Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen, Wat. Res., 37, 3499-3507.   DOI   ScienceOn
30 Arnett, C.M. and Adran, N.R., 2009, Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions, Biodegradation, 20, 15-26.   DOI
31 American Public Health Association, 1995, Standard Methods, 19th ed.
32 Berner, R.A., 1981, A new geochemical classification of sedimentary environments, J.of Sedi. Petro., 51, 359-365.
33 ATSDR (Agency for Toxic Substances and Disease Registry), 2011, http://www.atsdr.cdc.gov/spl/
34 Bae, B. and Park, J., 2014, Distribution and migration characteristics of explosive compounds in soil at military shooting ranges in Gyeonggi province, J. Kor. Geo-Environ. Soc., 15(6), 17-29.   과학기술학회마을   DOI
35 Beller, H.R., 2002, Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor, Wat. Res., 36, 2533-2540.   DOI
36 Binks, P.R., Nicklin, S., and Bruce, N.C., 1995, Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1, Appl. Environ. Microbiol., 61, 1318-1322.
37 Boopathy, R., 1994, Transformation of nitroaromatic compounds by methanogenic bacterium Methanococcus sp. (strain B), Arch. Microbiol., 162, 131-137.   DOI
38 Coleman, N.V., Nelson, D.R., and Duxbury T., 1998, Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22, Soil. Biol. Biochem, 30, 1159-1167.   DOI