• Title/Summary/Keyword: Overturning moment coefficient

Search Result 13, Processing Time 0.054 seconds

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

Correlation Analysis of Aerodynamic Forces acting on Tall Buildings with Various Side Ratios (다양한 변장비를 가진 고층건축물에 작용하는 풍력의 상관 분석)

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • The objective of this study is to construct the TPU aerodynamic database with wind tunnel test data of overall wind loads and responses on tall buildings. In this study, wind tunnel tests were conducted to investigate characteristics of wind forces and the effect of wind load combination by cross-correlation analysis among along-wind overturning moment, across-wind overturning moment and torsional moment on a tall building with various side ratios(D/B=0.33, 0.50, 0.77, 0.83, 0.91, 1.0, 1.1, 1.2, 1.3, 2.0 and 3.0) for different terrain roughnesses. The results of wind tunnel tests were compared with those of past literatures. As a result, there was no significant effects of changing of terrain roughnesses on moment coefficients and power spectral densities of across-wind overturning moment coefficients and torsional moment coefficients with various side ratios. Further, these results were good agreement with those of past literatures. From cross-correlation analysis, the across-wind overturning moment coefficients were highly correlated with the torsional moment coefficients. The results of this study will be helpful for practical designers in preliminary design stage.

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

An Experimental Analysis of the Structural Stability Analysis of a Container Crane according to the change of the Boom Shape (붐 형상 변화에 따른 컨테이너 크레인 구조 안정성의 실험적 해석)

  • Lee S.W.;Han D.S.;Shim J.J.;Han G.J.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.371-372
    • /
    • 2006
  • This study was carried out to analyze the effect of wind load on the structural stability of a container crane according to the change of the boom shape using wind tunnel test and provide a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load 75m/s wind velocity is applied in a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary layer wind tunnel with $11.52m^2$ cross-section area. Each directional drag and overturning moment coefficients of a container crane according to the change of the boom shape were investigated.

  • PDF

Moment Resisting Behaviors of Railway Electric Pole Foundation According to Form Work Methods (거푸집 설치 방법에 따른 철도 전철주기초의 모멘트 저항 거동)

  • Lee, Su-Hyung;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.411-417
    • /
    • 2013
  • The moment responses of electric pole foundations for a railroad were investigated using real-scale load tests. Large overturning moments were applied to two square rigid piles with a 1.1 m width and a 2.2 m embedded depth. Two different installation methods-with and without a form-were applied to evaluate the influence of the form work on the moment capacities of the foundations. The reduction of ground strength caused by the excavation without a form is more pronounce than the decrease of frictional strength due to the smooth concrete surface with a form. From the test results, it is found that the current design method which applies a proportional coefficient to consider the effect of a form work is not appropriate. When the normal and frictional stressed is considered separately, the effect of a form work can be estimated reasonably by reducing the friction angle between soil and foundation by 20%.

Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds

  • Huoyue, Xiang;Yongle, Li;Bin, Wang
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.237-247
    • /
    • 2015
  • Wind tunnel experiments are used to investigate the aerodynamic interactions between vehicles and wind barriers on a railway bridge. Wind barriers with four different heights (1.72 m, 2.05 m, 2.5 m and 2.95 m, full-scale) and three different porosities (0%, 30% and 40%) are studied to yield the aerodynamic coefficients of the vehicle and the wind barriers. The effects of the wind barriers on the aerodynamic coefficients of the vehicle are analyzed as well as the effects of the vehicle on the aerodynamic coefficients of the wind barriers. Finally, the relationship between the drag forces on the wind barriers and the aerodynamic coefficients of the vehicle are discussed. The results show that the wind barriers can significantly reduce the drag coefficients of the vehicle, but that porous wind barriers increase the lift forces on the vehicle. The windward vehicle will significantly reduce the drag coefficients of the porous wind barriers, but the windward and leeward vehicle will increase the drag coefficients of the solid wind barrier. The overturning moment coefficient is a linear function of the drag forces on the wind barriers if the full-scale height of the wind barriers $h{\leq}2.5m$ and the overturning moment coefficients $C_O{\geq}0$.

Design for Out-of-Plane Direction of Nonstructural Masonry Walls Using Finite Element Analysis (유한요소해석을 활용한 비구조 조적벽의 면외방향 설계)

  • Choi, Myeong Gyu;Yu, Eunjong;Kim, Min Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • This study proposed a simplified finite element analysis procedure for designing the nonstructural masonry wall in the out-of-plane direction. The proposed method is a two-step elastic analysis procedure by bilinearizing the behavior of the masonry wall. The first step analysis was conducted with initial stiffness representing the behavior up to the effective-yield point, and the second step analysis was conducted with post-yield stiffness. In addition, the orthotropic material property of the masonry was considered in the FE analysis. The maximum load was estimated as the sum of the maximum loads in the first and second step analyses. The maximum load was converted into the moment coefficients and compared with those from the yield line method applied in Eurocode 6. The moment coefficients calculated through the proposed procedure showed a good match with those from the yield line method with less than 6% differences.

Life Cycle Cost & Reliability Analysis of Quaywall Design Parameters (안벽 설계변수의 신뢰성 해석과 생애주기비용 분석)

  • Kim, Hong-Yeon;Yoon, Gil-Lim;Yoon, Yeo-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.508-518
    • /
    • 2008
  • Reliability and sensitivity analysis of the design parameters for a section of caisson type quaywall which is the most applicable in Korea were performed. It was tried to estimate probabilities of failure for the system of the multiple failure modes and to analyze LCC in the quaywall structure. The reliability analysis was performed by FORM. Also, sensitivity indices were estimated using the reliability indices, which may be used inferring effects of each design parameter on the reliability indices. As a result, the coefficient of friction between caisson and rubble, the moment by self weight and the moment of resistance mostly affected on the reliability indices in the sliding, overturning and foundation failure, respectively. System reliability theorem was applied in order to estimate the probabilities of failure for the system of the multiple failure modes. As the results of estimation of the probabilities of failure for the system, all cases were more conservative than those for the elements, according to both failure mode and load combination applied to series system. It entirely exceeded the target reliability index, but it was consistent with the theorem. According to the optimum LCC with the width of the caisson, the probability of failure exceeded the target probability of failure at then time. Therefore, it was judged to be insufficient to the practical application.

  • PDF

A Comparison of the Wind Resistance Characteristic of a Container Crane According to the Increase to the Lifting Capacity (권상용량 증가에 따른 컨테이너 크레인의 내풍특성 비교)

  • Lee, Seong-Wook;Kim, Hyung-Hoon;Han, Dong-Seop;Han, Geun-Jo;Kim, Tae-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.204-209
    • /
    • 2007
  • This study was carried out to analyze the effect of wind load on the structural stability of a container crane according to the increase of the lifting capacity using wind tunnel test and provided a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary-layer wind tunnel with $11.52m^{2}$ cross-section area. Each directional drag and overturning moment coefficients were investigated.

  • PDF