• Title/Summary/Keyword: Overall thermal performance

Search Result 250, Processing Time 0.028 seconds

A Study on Characteristics and the Back Fire Limit Equivalnce Ratio of Hydrogen Fueled Engine with External Mixture (흡기관분사식 수소기관의 특성 및 역화한계당량비의 해석)

  • Paik, Sung Ho;Lee, Jong Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.55-62
    • /
    • 1996
  • As an essential step for development of a duel injection hydrogen fueled engine which can obtain high thermal efficiency and power in overall operating range, performance and BFL(back fire limit) equivalance ratio in hydrogen fueled engine with external mixture are investigated. As the results, BFL equivalence ratio in hydrogen fueled engine with external mixture is approximately 0.7. It is deduced that controls of driving conditions are required in transient stage from external mixture type to inner injection type. And in order to increase thermal efficiency, it is also found that BFL equivalence ratio should be expanded as much as possible.

  • PDF

Characteristics of $CH_4$ Reforming by Rotating Arc (회전 아크를 이용한 메탄 개질 반응에서 플라즈마 모드에 따른 개질 특성)

  • Kim, Dong-Hyun;Lee, Dae-Hoon;Kim, Kwan-Tae;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.15-21
    • /
    • 2006
  • Characteristics of a plasma reactor for partial oxidation of methane, especially focused on the role and effectiveness of plasma chemistry, are investigated. Partial oxidation of methane is investigated using a rotating arc which is a three dimensional version of a typical gliding arc. Three different modes of operation were found. Each mode shows different reforming performance. The reason for the difference is due to the difference in relative role of thermal and plasma chemistry in overall process. A mode with high temperature results higher methane conversion and hydrogen selectivity in contrast to the mode with lower temperature where poor methane conversion and higher selectivity of $C_2$ species are observed. In this way, we can confirm that by controlling characteristic of process or controlling relative strength of plasma chemistry and thermal chemistry, it is possible to map an optimal condition of reforming process by rotating arc.

  • PDF

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

Thermal Energy Extraction from Phase Change Material - by Means of Finned Thermosyphon - (상변화 물질로부터의 열에너지 추출에 관한 연구 - 핀이 부착된 열싸이폰 이용에 관하여 -)

  • Mok, Jai-Kyun;Yoo, Jai-Suk;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.5-12
    • /
    • 1988
  • One of the effective means to transfer the heat into and from the energy storage medium is thermosyphon. In this study, a two-phase closed thermosyphon with circular fins was used to extract the thermal energy stored in paraffin wax (Sunoco p-116). Heat transfer characteristics along the heat flow path were investigated as well as the overall performance. Some of the important results are as follows: (1) The temperature distribution of the wax in the radial direction was always maintained fairly uniformly; (2) Compared with bare thermosyphon, the heat transfer rate was vastly improved in the early stage of the experiment; and (3) Heat transfer coefficient between the wax and evaporating section of thermosyphon remained nearly constant during the experiment.

  • PDF

Comparisons of the Heat Dissipation Performances of MPCB and FPCB in LED Lights (LED조명에서 MPCB와 FPCB의 방열 성능 비교 연구)

  • Shin, Sang-Muk;Moon, Duk-Young;Yoo, Kyung-Sun;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.371-377
    • /
    • 2017
  • In this study, the heat dissipation performances of metal printed circuit boards (MPCBs) and flexible printed circuit boards (FPCBs) used in light-emitting diode (LED) lights were compared and analyzed by performing a heat dissipation simulation using a thermal flow analysis program. The results were summarized graphically. The temperature distribution of the MPCB was found to be better than that of the FPCB, indicating the better heat dissipation performance of the MPCB. For the two FPCB structures studied, we confirmed the LED temperature and temperature distribution by thermal flow analysis and found that for better overall heat dissipation performance, PCBs should preferably have an asymmetric structure. We confirmed the possibility of using FPCBs, which are characterized by a flexible structure, for LED lighting.

THE MODEL PREDICTIVE CONTROLLER FOR THE FEEDWATER AND LEVEL CONTROL OF A NUCLEAR STEAM GENERATOR

  • Lee, Yoon Joon;Oh, Seung Jin;Chun, Wongee;Kim, Nam Jin
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.911-918
    • /
    • 2012
  • Steam generator level control at low power is difficult due to its adverse thermal hydraulic properties, and is usually conducted by an operator. The basic model predictive control (MPC) is similar to the action of an operator in that the operator knows the desired reference trajectory for a finite period of time and takes the necessary control actions needed to ensure the desired trajectory. An MPC is based on a model; the performance as well as the efficiency of the MPC depends heavily on the exactness of the model. In this study, steam generator models that can describe in detail its thermal hydraulic behaviors, particularly at low power, are used in the MPC design. The design scope is divided into two parts. First, the MPC feedwater controller of the feedwater station is determined, and then the MPC level controller for the overall system is designed. Because the dynamic properties of a steam generator change with the power levels, a realistic situation is simulated by changing the transfer functions of the steam generator at every time step. The resulting MPC controller shows good performance.

Development of BLDC Motor for HEV Engine Cooling and Battery Cooling System (하이브리드 차량의 엔진 및 배터리 냉각팬 구동용 BLDC모터 개발)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Hybrid Electric Vehicles(HEVs) have seriously come into prevalence recently as car manufacturers and consumers have become more aware of the environmental and economic problems of conventional vehicles. For the alternative power-train and battery cooling systems in HEVs, an effective thermal management system is required, and many automakers are interested in using Brushless DC(BLDC) motors for cooling fans for the overall traction unit's performance and energy saving capability. This paper presents the development status of BLDC motors as major parts of the power-train, i.e. the engine cooling and battery cooling fans of HEVs. A design that uses BLDC motors for the power-train and each battery cooling fan, is successfully implemented through using electro-magnetic analysis, and prototype BLDC motors are examined. As experimental results, the BLDC motors achieved an efficiency of 85% as engine cooling fans and 72% as a battery thermal management fan motor. The electric cogging noise is significantly reduced by changing the skew of the slot pitch angle and optimizing the magnetic shape.

A Study on the Performance of Heat Exchanger for Closed Cooling Tower (밀폐식 냉각탑용 열교환기의 성능에 관한 연구)

  • Lee, Sang-Sik;Yoo, Seong-Yeon;Kim, Jin-Hyuck;Ahn, Young-Hwan;Park, Hyoung-Joon;Ryu, Hae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.334-339
    • /
    • 2008
  • An closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The purpose of this study is to evaluate thermal performance of heat exchanger at various conditions and to provide design datebase. The experimental study regarding heat exchanger for closed cooling tower was conducted. Experimental apparatus consists of constant temperature bath, water pump, spray nozzle, heat exchanger, fan, and date acquisition system. Heat transfer rates at various air velocitys, water flow rates, two different spray modes were measured and heat transfer coefficient were calculated to compare the thermal performances. This study provides that the heat transfer coefficient increases with increasing spray water flow rate and with increasing air velocity. The wet mode was more effective than dry mode for closed cooling tower to this study.

  • PDF

Influence of NCG Charged Mass on the Thermal Performance of VCHP with Screen Mesh Wick (스크린메쉬형 VCHP에서 NCG량에 따른 열전달 성능실험)

  • Park, Young-Sik;Chung, Kyung-Taek;Suh, Jeong-Se
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.689-695
    • /
    • 2008
  • Experimental study has been performed to investigate the influence of non-condensible gas(NCG) charged mass on the thermal performance of a variable conductance heat pipe(VCHP) with screen mesh wick. The VCHP is furnished by screen mesh number 200 for the pipe outer diameter of 12.7mm and the pipe length of 500 mm. The VCHP is filled with water as working fluid of 4.8g and nitrogen as NCG and has evaporator, condenser and adiabatic section, respectively. For the results from experiment, it is found that, for the same charged mass of working fluid, the overall wall temperatures of heat pipe grows up with increasing NCG charged mass. The variation of operating temperature of VCHP reduces with increasing NCG mass. In addition, the profile of axial wall temperature distribution is presented for heat transport capacity of heat pipe, the temperature of cooling water of condenser, inclination angle, and operating temperature.

Effect of two way thermal hydraulic-fuel performance coupling on multicycle depletion

  • Awais Zahur;Muhammad Rizwan Ali;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4431-4446
    • /
    • 2023
  • A Multiphysics coupling framework, MPCORE, has been developed to analyze safety parameters using the best estimate codes. The framework contains neutron kinetics (NK), thermal hydraulics (TH), and fuel performance (FP) codes to analyze fuel burnup, radial power distribution, and coolant temperature (Tbc). Shuffling and rotation capabilities have been verified on the Watts Bar reactor for three cycles. This study focuses on two coupling approaches for TH and FP modules. The one-way coupling approach involves coupling the FP code with the NK code, providing no data to the TH modules but getting Tbc as boundary condition from TH module. The two-way coupling approach exchanges information from FP to TH modules, so that the simplified heat conduction solver of the TH module is not used. The power profile in both approaches does not differ significantly, but there is an impact on coolant and cladding parameters. The one-way coupling approach tends to over-predict the cladding hydrogen concentration (CHC). This research highlights the difference between one-way and two-way coupling on critical boron concentration, Tbc, CHC, oxide surface temperature, and pellet centerline temperature. Overall, MPCORE framework with two-way coupling provides a more accurate and reliable analysis of safety parameters for nuclear reactors.