• Title/Summary/Keyword: Output-series

Search Result 968, Processing Time 0.023 seconds

Study of ZVS-PWM Series Resonant Converter with Active-Clamp Technique (액티브 클램프 기법을 이용한 영전압 스위칭 직렬 공진형 컨버터에 관한 연구)

  • Jeon, Hee-Cheol;Kim, Yong;Jung, Kye-Cheon;Kim, Pil-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2674-2677
    • /
    • 1999
  • Resonant converters have several salient features such as high efficiency and low noise. Therefore, ZVS-PWM controlled series resonant converter with active-clamp technique is presented. The combination of an active-clamp technique and resonant circuit makes it possible to control the output voltage of the resonant converter with PWM. This new resonant converter was implemented and has achieved a good controllability. In this paper, the normal load characteristics and abnormal voltage increase in the case of the light load are analyzed. As a result, it is clarified that the stray capacitance of the transformer is a cause of the abnormal voltage increase. Then, it is confirmed that the abnormal voltage increase is suppressed by decreasing the duty ratio. ZVS condition is analyzed. The maximum efficiency of 89% is obtained for the output of 10V and 5A.

  • PDF

Small-Signal Modeling and Analysis of Input Series-Output Parallel Connected Converter System for High Voltage Power Conversion Application (고 입력 전압 응용에 적합한 입력직렬-출력병렬 컨버터 시스템의 소신호 분석)

  • You, Jeong-Sik;Kim, Jung-Won;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2712-2714
    • /
    • 1999
  • The small signal model for input series-output parallel connected converter system employing charge control together with input capacitor voltage feedback loop is developed. From the model developed, the effect of input capacitor voltage feedback loop to the system stability and outer loop compensator design is analyzed. Theoretical results and simulation show that input capacitor voltage feedback loop has no critical effects on the system stability, so the system can be reduced to a equivalent single module for the stability analysis and outer loop compensator design.

  • PDF

Analysis of the Unbalance of DC Link Voltage in 12-step Inverter with 2-Phase Chopper Preregulator (2상 쵸퍼 Preregulator를 갖는 12-step 인버터에서의 DC Link단 전압 불평형 해석)

  • Nho, Eui-Cheol;Kim, In-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.258-260
    • /
    • 1995
  • This paper deals with the voltage unbalance of DC link voltage in series connected two 6-step inverters with double chopper preregulator. Each output of the 6-step inverter is connected to each transformer. The secondary windings of one of the transformers is zig-zag connected and the other star connected. The secondary terminals of the two transformers are series connected which makes 12-step output voltage waveform. In this case, the characteristics of the two transformers are rather different each other. The difference results in the voltage unbalance of the two 6-step inverter input capacitor voltages which make the DC link voltage. The degree of the voltage unbalance is analysied with the variations of load power, load power factor and % impedance of the transformer.

  • PDF

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.

Study on the Capacitor-self-excited Three-phase Synchronous Generator (A 캐패시터 자력식 삼상동기발전기에 관한 연구)

  • 정연택;김영동
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.11
    • /
    • pp.425-432
    • /
    • 1984
  • This paper is to propse a new self-excitation method of synchronous generator. Instead of conventional exciter of synchronous generator, the additional winding which is arranged in addition to the armature winding, is used in this generator. The output terminal of the additional winding is connected to a capacitor and to a full wave rectifier in series. In this configuration, one source double excitation which is composed of capacitor-self-excitation by lead urrent and direct current excitation by rectifier, is induced. The result is that` The excetation efficency is improved greatly and output waveform is improved also. In three-phase synchronous generator using the new method of the one source double excitation, voltage element (shunt characteristics) and current element (series characteristics)are compounded in scalar by adapting star-point-open-rectifier system. The result is as following` The effect of load power factor angle on voltage regulation is reduced greatly, compound characteristics is become manifold by controlling capacity of capacitor, and transient response is improved.

  • PDF

Dual Diversity over Correlated Ricean Fading Channels

  • Bithas Petros S.;Sagias Nikos C.;Mathiopoulos P. Takis
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.67-74
    • /
    • 2007
  • The performance of dual diversity receivers operating over correlated Ricean fading channels is analyzed. Using a previously derived rapidly converging infinite series representation for the bivariate Ricean probability density function, analytical expressions for the statistics of dual-branch selection combining, maximal-ratio combining, and equal-gain combining output signal-to-noise ratio (SNR) are derived. These expressions are employed to obtain novel analytical formulae for the average output SNR, amount of fading, average bit error probability, and outage probability. The proposed mathematical analysis is used to study various novel performance evaluation results with parameters of interest the fading severity, average input SNRs, and the correlation coefficient. The series convergence rate is also examined verifying the fast convergence of the analytical expressions. The accuracy of most of the theoretical performance evaluation results are validated by means of computer simulations.

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF

Prediction of Gain Expansion and Intermodulation Performance of Nonlinear Amplifiers

  • Abuelma'atti, Muhammad Taher
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.89-94
    • /
    • 2007
  • A mathematical model for the input-output characteristic of an amplifier exhibiting gain expansion and weak and strong nonlinearities is presented. The model, basically a Fourier-series function, can yield closed-form series expressions for the amplitudes of the output components resulting from multisinusoidal input signals to the amplifier. The special case of an equal-amplitude two-tone input signal is considered in detail. The results show that unless the input signal can drive the amplifier into its nonlinear region, no gain expansion or minimum intermodulation performance can be achieved. For sufficiently large input amplitudes that can drive the amplifier into its nonlinear region, gain expansion and minimum intermodulation performance can be achieved. The input amplitudes at which these phenomena are observed are strongly dependent on the amplifier characteristics.

  • PDF

40kV Solid State Pulsed Power Supply for Environmental Applications (40kV 친환경 응용을 위한 반도체 기반 펄스 전원장치)

  • Song, Seung-Ho;Cho, Hyun-Bin;Park, Su-Mi;Lee, Seung-Hee;Jin, Hee-Sung;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.45-47
    • /
    • 2018
  • This paper describes the 40kV solid state pulsed power supply for environmental applications. The output specifications of the pulsed power supply are 40kV, 300A, 3kHz, and average output power of 13kW. In order to generate a high voltage, a series stacking cell structure is used which is charged in parallel and discharged in series. Due to this structure, there is no dynamic voltage balancing problem as well as static voltage balancing problem for switches used in high voltage pulse power supplies. To verify this pulse power supply design, PSpice modeling was performed. Finally, experimental results with non-inductive resistive load and gas treatment reactor proved the reliability of the solid state pulsed power supply.

  • PDF

Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1632-1642
    • /
    • 2014
  • This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at $V_{in}/2$ voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.