Dual Diversity over Correlated Ricean Fading Channels

  • Bithas Petros S. (Institute for Space Application and Remote Sensing, National Observatory of Athens) ;
  • Sagias Nikos C. (Institute of Informatics and Telecommunications, National Center for Scientific Research) ;
  • Mathiopoulos P. Takis (Institute for Space Application and Remote Sensing, National Observatory of Athens)
  • Published : 2007.03.31

Abstract

The performance of dual diversity receivers operating over correlated Ricean fading channels is analyzed. Using a previously derived rapidly converging infinite series representation for the bivariate Ricean probability density function, analytical expressions for the statistics of dual-branch selection combining, maximal-ratio combining, and equal-gain combining output signal-to-noise ratio (SNR) are derived. These expressions are employed to obtain novel analytical formulae for the average output SNR, amount of fading, average bit error probability, and outage probability. The proposed mathematical analysis is used to study various novel performance evaluation results with parameters of interest the fading severity, average input SNRs, and the correlation coefficient. The series convergence rate is also examined verifying the fast convergence of the analytical expressions. The accuracy of most of the theoretical performance evaluation results are validated by means of computer simulations.

Keywords

References

  1. M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels. 2nd ed., New York: Wiley, 2005
  2. J. G. Proakis, Digital Communications. 3rd ed., New York: McGraw-Hill, 1995
  3. E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papke, 'The land mobile satellite communication channel-recording, statistics, and channel model,' IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 375-386, May 1991 https://doi.org/10.1109/25.289418
  4. G. E. Corazza and F. Vatalaro, 'A statistical model for land mobile satellite channels and its applications to nongeostationary orbit system,' IEEE Trans. Veh. Technol., vol. 43, no. 3, pp. 738-742, Aug. 1994 https://doi.org/10.1109/25.312773
  5. H. Wakana, 'A propagation model for land-mobile-satellite communication,' in Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 3, June 1991, pp. 1526-1529
  6. R. Akturan and W. J. Vogel, 'Path diversity for LEO satellite-PCS in the urban environment,' IEEE Trans. Antennas Propag., vol. 45, no. 7, pp. 1107-1116, July 1997 https://doi.org/10.1109/8.596901
  7. M.-S. Alouini and M. K. Simon, 'Dual diversity over correlated lognormal fading channels,' IEEE Trans. Commun., vol. 50, no. 12, pp. 1946-1951, Dec. 2002 https://doi.org/10.1109/TCOMM.2002.806552
  8. G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, 'BER performance of dual predetection EGC in correlative Nakagami-m fading,' IEEE Trans. Commun., vol. 52, no. 1, pp. 50-53, Jan. 2004 https://doi.org/10.1109/TCOMM.2003.822166
  9. M. K. Simon and M.-S. Alouini, 'A unified performance analysis of digital communication with dual selective combining diversity over correlated Rayleigh and Nakagami-m fading channels,' IEEE Trans. Commun., vol. 47, no. 1, pp.33-43, Jan. 1999 https://doi.org/10.1109/26.747811
  10. N. C. Sagias, G. K. Karagiannidis, D. A. Zogas, P. T. Mathiopoulos, and G. S. Tombras, 'Performance analysis of dual selection diversity in correlated Weibull fading channels,' IEEE Trans. Commun., vol. 52, no. 7, pp. 1063-1067, July 2004 https://doi.org/10.1109/TCOMM.2004.831362
  11. C. D. Iskander, 'Outage probability of dual-branch coherent equal-gain combining in correlated Nakagami-m fading,' IEE Electron. Lett., vol. 41, no. 8, pp. 483-484, Apr. 2005 https://doi.org/10.1049/el:20057726
  12. G. M. Vitetta, U. Mengali, and D. P. Taylor, 'An error probability formula for noncoherent orthogonal binary FSK with dual diversity on correlated Rician channels,' IEEE Commun. Lett., vol. 3, no. 2, pp. 43-45, Feb. 1999 https://doi.org/10.1109/4234.749357
  13. M. Z. Win and R. K. Mallik, 'Error analysis of noncoherent M-ary FSK with postdetection EGC over correlated Nakagami and Rician channels,' IEEE Trans. Commun., vol. 50, no. 3, pp. 378-383, Mar. 2002 https://doi.org/10.1109/26.990898
  14. Y. Cheng and C. Tellarnbura, 'Distribution functions of selection combiner output in equally correlated Rayleigh, Rician, and Nakagami-m fading channels,' IEEE Trans. Commun., vol. 52, no. 11, pp. 1948-1956, Nov. 2004 https://doi.org/10.1109/TCOMM.2004.836596
  15. D. A. Zogas and G. K. Karagiannidis, 'Infinite series representations associated with the bivariate Rician distribution and their applications,' IEEE Trans. Commun., vol. 53, no. 11, pp. 1790-1794, Nov. 2005 https://doi.org/10.1109/TCOMM.2005.858659
  16. M. K. Simon, 'Comments on infinite-series representations associated with the bivariate Rician distribution and their applications,' IEEE Trans. Commun., vol. 54, no. 8, pp. 1511-1512, Aug. 2006 https://doi.org/10.1109/TCOMM.2006.878821
  17. M. K. Simon, Probability Distributions Involving Gaussian Random Variables-A Handbook for Engineers and Scientists. Norwell, MA: Kluwer, 2002
  18. A. A. Abu-Dayya and N. C. Beaulieu, 'Switched diversity on microcellular Ricean channels,' IEEE Trans. Veh. Technol., vol. 43, no. 4, pp. 970-976, Nov. 1994 https://doi.org/10.1109/25.330159
  19. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. 6th ed., New York: Academic, 2000
  20. J. R. Mendes, M. D. Yacoub, and D. B. da Costa. (2006, Oct. 9). Closed-form generalised power correlation coefficient of Ricean channels. European Trans. Telecommun. [Online]
  21. A. Papoulis, Probability, Random Variables, and Stochastic Processes. 2nd ed., McGraw-Hill, 1984
  22. D. A. Zogas, G. K. Karagiannidis, and S. A. Kotsopoulos, 'Equal gain combining over Nakagami-n (Rice) and Nakagami-q (Hoyt) generalized fading channels,' IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 374-379, Mar. 2005 https://doi.org/10.1109/TWC.2004.842953
  23. G. A. Baker and P. Graves-Morris, Pade Approximants. Cambridge University Press, 1996
  24. G. K. Karagiannidis, 'Moments-based approach to the performance analysis of equal gain diversity in Nakagami-m fading,' IEEE Trans. Commun., vol. 52, no. 5, pp. 685-690, May 2004 https://doi.org/10.1109/TCOMM.2004.826255
  25. P. S. Bithas, G. K. Karagiarmidis, N. C. Sagias, P. T. Mathiopoulos, S. A. Kotsopoulos, and G. E. Corazza, 'Performance analysis of a class of GSC receivers over nonidentical Weibull fading channels,' IEEE Trans. Veh. Technol., vol. 54, no. 6, pp. 1963-1970, Nov. 2005 https://doi.org/10.1109/TVT.2005.858194
  26. H. Amindavar and J. A. Ritcey, 'Pade approximations of probability density functions,' IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 2, pp. 416-424, Apr. 1994 https://doi.org/10.1109/7.272264
  27. C. C. Tan and N. C. Beaulieu, 'Infinite series representations of the bivariate Rayleigh and Nakagami-m distribution,' IEEE Trans. Commun., vol. 45, no. 10, pp. 1159-1161, Oct. 1997 https://doi.org/10.1109/26.634675
  28. G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, 'On the multivariate Nakagami-m distribution with exponential correlation,' IEEE Trans. Commun., vol. 51, no. 8, pp. 1240-1244, Aug. 2003 https://doi.org/10.1109/TCOMM.2003.815071
  29. Q. T. Zhang and H. G. Lu, 'A general analytical approach to multi-branch selection combining over various spatially correlated fading channels,' IEEE Trans. Commun., vol. 50, no. 7, pp. 1066-1073, July 2002 https://doi.org/10.1109/TCOMM.2002.800804
  30. M. Nakagami, 'The m-distribution-A general formula of intensity distribution of rapid fading,' in Statistical Methods in Radio Wave Propagation, Oxford, U.K. Pergamon Press, 1960, pp. 3-36