• Title/Summary/Keyword: Output ripple voltage

Search Result 373, Processing Time 0.029 seconds

Analysis and Implementation of a New Three-Level Converter

  • Lin, Bor-Ren;Nian, Yu-Bin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.478-487
    • /
    • 2014
  • This study presents a new interleaved three-level zero-voltage switching (ZVS) converter for high-voltage and high-current applications. Two circuit cells are operated with interleaved pulse-width modulation in the proposed converter to reduce the current ripple at the input and output sides, as well as to decrease the current rating of output inductors for high-load-current applications. Each circuit cell includes one half-bridge converter and one three-level converter at the primary side. At the secondary side, the transformer windings of two converters are connected in series to reduce the size of the output inductor or switching current in the output capacitor. Based on the three-level circuit topology, the voltage stress of power switches is clamped at $V_{in}/2$. Thus, MOSFETs with 500 V voltage rating can be used at 800 V input voltage converters. The output capacitance of the power switch and the leakage inductance (or external inductance) are resonant at the transition interval. Therefore, power switches can be turned on under ZVS. Finally, experiments verify the effectiveness of the proposed converter.

Development of Robust Algorithm to Eliminate Low Frequency Current Ripples in Fuel Cell Generation System (동적변화에 강인한 연료전지 발전시스템의 저주파 리플전류 제거 알고리즘 개발)

  • Kim, Jong-Soo;Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1720-1727
    • /
    • 2009
  • This paper presents that generation and propagation mechanism of low frequency current ripples generated by a rectification effect of an inverter in fuel cell generation system is analyzed. The ripple reduction methode using hardware components such as capacitors and inductors is examined to reduce low frequency current ripples. A new fast and robust low frequency current ripple elimination algorithm is then proposed to incorporate a single loop current controller, which directly controls fuel cell current, without any extra hardware. The proposed algorithm can completely eliminate this current ripple as well as an overshoot or undershoot is significantly reduced. And the de link voltage and output current are well regulated by inverter controller. The validity of proposed algorithm is verified both computer simulation using PSIM 6.0 and experiment with a 1kW laboratory prototype.

Switching Method to Minimize the Current Ripple of 3-Phase Interleaved Bidirectional DC-DC Converter in Light Load Operation (3상 인터리브드 양방향 DC-DC 컨버터의 경부하 동작 시 전류 리플 최소화를 위한 스위칭 기법)

  • Jung, Jae-Hun;Nho, Eui-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.55-62
    • /
    • 2015
  • This paper deals with a switching method to minimize the current ripple component of 3-phase interleaved bidirectional DC-DC converter for charging and discharging of the battery. The characteristics of the output current ripple in 3-phase and 2-phase operation modes according to the variation of battery voltage is analyzed and a phase conversion method for minimizing the magnitude of the current ripple is proposed. The proposed method can extend the light load range because the switching frequency is lower than that of a 3-phase operating system. Simulation and experimental results show the usefulness of the proposed method.

Compensating for the Neutral-Point Potential Variation in Three-Level Space-Vector PWM Method (3-레벨 인버터 공간벡터 변조시의 중성점 전위 변동 보상법)

  • Seo Jae Hyeong;Kim Kwang Seob;Bang Sang Seok;Choi Chang Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.475-478
    • /
    • 2001
  • In performing the three-level SVPWM, it is nearly impossible to control the neutral-point potential exactly to the half of the dc-link voltage at all times. Therefore the inverter would produce an erroneous output voltage by this voltage unbalance. So the voltage unbalance has to be compensated in doing PWM, when the voltage unbalance occurs whether it is small or large, to make the inverter output voltage follow the reference voltage exactly the same. In this paper, a new compensating method for the neutral-point potential variation in a three-level inverter space vector PWM (SVPWM) is presented. By using the proposed method, the output voltage of the inverter can be made same as the reference voltage and thus the current and torque ripple of the inverter driven motor can be greatly improved even if the voltage unbalance is quite large. The proposed method is verified experimentally with a 3-level IGBT inverter.

  • PDF

Three-Level SEPIC with Improved Efficiency and Balanced Capacitor Voltages

  • Choi, Woo-Young;Lee, Seung-Jae
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.447-454
    • /
    • 2016
  • A single-ended primary-inductor converter (SEPIC) features low input current ripple and output voltage up/down capability. However, the switching devices in a two-level SEPIC suffer from high voltage stresses and switching losses. To cope with this drawback, this study proposes a three-level SEPIC that uses a low voltage-rated switch and thus achieves better switching performance compared with the two-level SEPIC. The three-level SEPIC can reduce switch voltage stresses and switching losses. The converter operation and control method are described in this work. The experimental results for a 500 W prototype converter are also discussed. Experimental results show that unlike the two-level SEPIC, the three-level SEPIC achieves improved power efficiency with balanced capacitor voltages.

Improved Input Voltage Sensorless Control of Three-Phase AC/DC PWM PFC Converter using Virtual Flux Observer (가상자속관측기를 이용한 3상 AC/DC PWM PFC 컨버터의 입력전압 센서리스 제어 개선)

  • Kim, Young-Sam;So, Sang-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.566-574
    • /
    • 2013
  • In this paper, direct power control system for three-phase PFC AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the reduced-order virtual flux observer using the actual currents and the command control voltage. Moreover, source voltage sensors are replaced by a estimated flux. DC output voltage has been compensated by DC output ripple voltage estimation algorithm. The active and reactive powers estimation are performed based on the estimated flux and Phase angle. The proposed algorithm is verified through simulation and experiment.

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

A Non-Isolated Boost Charger for the Li-Ion Battery Suitable for the Fuel Cell Powered Laptop Computer

  • Nguyen, Van Sang;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.177-178
    • /
    • 2012
  • In spite of its compactness and lightness, conventioan boost converter is not preferred for the charge applications. In this paper, a non-isolated boost converter topology for the Li-Ion battery suitable for fuel cell powered laptop computer is proposed and analyzed. The proposed converter has an additional inductor at the output to reduce the output ripple current and voltage. This feature makes it suitable for the charger application by eliminating the disadvantages of the conventional non-isolated boost converter mentioned above.

  • PDF

High-Power Electronic Ballast Design for Metal-Halide Lamp without Acoustic Resonance (음향 공명 현상을 제거한 MHL용 고출력 전자식 안정기 설계)

  • Park, Chong-Yun;Kim, Ki-Nam;Lee, Bong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1187-1194
    • /
    • 2008
  • This paper presents a high-power electronic ballast for a metal-hallide lamp(MHL) that employs frequency modulation(FM) technique to eliminate acoustic resonance(AR). The proposed ballast consists of a full-bridge rectifier, a power factor correction(PFC) circuit, a full-bridge(FB) inverter, an ignitor using LC resonance and an FM control circuit. Whereas a manual PFC provides advantages in terms of high reliability and low cost for constructing the circuit, it is difficult to supply a stable voltage because of the output voltage ripple that occurs with a period of 120Hz. Although the ballast can be designed with a small size and a light weight if it is driven at a switching frequency between 1 and 100 kHz, AR will occur if the eigen-value frequency of the lamp coincides with the inverter's operation frequency. The operation frequency was modulated in real time according to the output voltage ripple to compensate for the variation in power supplied to the lamp and eliminate AR. Performance of the proposed technique was validated through numerical analysis, computer simulation using PSPICE and by applying it to an electronic ballast for a prototype 1kW MHL.