Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.1.220

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators  

Sathiyanathan, M. (Dept. of Electrical and Electronics Eng., PSG Institute of Technology and Applied Research)
Jaganathan, S. (Dept. of Electrical and Electronics Eng., Dr. N.G.P. Institute of Technology)
Josephine, R.L. (Dept. of Electrical and Electronics Eng., National Institute of Technology)
Publication Information
Journal of Power Electronics / v.19, no.1, 2019 , pp. 220-233 More about this Journal
Abstract
This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.
Keywords
DC-AC converter; DC-DC converter; Solar power generator; Thermoelectric generator; Universal power converter;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 The International Energy Agency (IEA), "World Energy Outlook-2017," IEA Publications, pp.1-8, Nov. 2017. https://www.iea.org/Textbase/npsum/weo2017SUM.pdf.
2 C.-H. Huang and C.-C. Chen, “A high-efficiency currentmode buck converter with a power-loss-aware switch-ondemand modulation technique for multifunction SoCs,” IEEE Trans. Power Electron., Vol. 31, No. 12, pp. 8303- 8316, Dec. 2016.   DOI
3 D. Vinnikov, A. Chub, R. Kosenko, J. Zakis, and E. Liivik, “Comparison of performance of phase-shift and asymmetrical pulsewidth modulation techniques for the novel galvanically isolated buck-boost DC-DC converter for photovoltaic applications,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 5, No. 2, pp. 624-637, Jun. 2017.   DOI
4 L. Cheng, Y. Liu, and W. H. Ki, “A 10/30 MHz fast reference-tracking buck converter with DDA-based type-III compensator,” IEEE J. Solid-State Circuits, Vol. 49, No. 12, pp. 2788-2799, Dec. 2014.   DOI
5 W.-C. Chen, Y.-W. Chou, M.-W. Chien, H.-C. Chen, and S.-H. Yang, K.-H. Chen, Y.-H. Lin, C.-C. Lee, S.-R. Lin, and T.-Y. Tsai, “A dynamic bootstrap voltage technique for a high-efficiency buck converter in a universal serial bus power delivery device,” IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 3002-3015, Apr. 2016.   DOI
6 A. Rodriguez, A. Vazquez, M. R. Rogina, and F. Briz, “Synchronous boost converter with high efficiency at light load using QSW-ZVS and SiC MOSFETs,” IEEE Trans. Ind. Electron., Vol. 65, No. 1, pp. 386-393, Jan. 2018.   DOI
7 B. Honarjoo, S. M. Madani, M. Niroomand, and E. Adib, “Analysis and implementation of a new single switch, high voltage gain DC-DC converter with a wide CCM operation range and reduced components voltage stress,” J. Power Electron., Vol. 18, No. 1, pp. 11-22, Jan. 2018.   DOI
8 F. Radmand and A. Jalili, “A novel switched-capacitor based high step-up DC/DC converter for renewable energy system applications,” J. Power Electron., Vol. 17, No. 6, pp. 1402-1412, Nov. 2017.   DOI
9 N. ul Hassan, Y.-J. Kim, B.-M. Han, and J.-Y. Lee, “A hybrid DC/DC converter for EV OBCs using full-bridge and resonant converters with a single transformer,” J. Power Electron., Vol. 17, No. 1, pp. 11-19, Jan. 2017.   DOI
10 J.-I. Baek, J.-K. Kim, J.-B. Lee, H.-S. Youn, and G.-W. Moon, “A boost PFC stage utilized as half-bridge converter for high-efficiency DC-DC stage in power supply unit,” IEEE Trans. Power Electron., Vol. 32, No. 10, pp. 7449- 7457, Oct. 2017.   DOI
11 S.-H. Ham, H.-J. Choe, H.-S. Lee, and B. Kang, “Improvement of power-conversion efficiency of AC-DC boost converter using 1:1 transformer,” IEEE Trans. Power Electron., Vol. 33, No. 8, pp. 6646-6655, Oct. 2017.   DOI
12 E. M. Ahmed and M. Shoyama, “Variable step size maximum power point tracker using a single variable for stand-alone battery storage PV systems,” J. Power Electron., Vol. 11, No. 2, pp. 218-227, Mar. 2011.   DOI
13 G. R. C. Mouli, J. H. Schijffelen, P. Bauer, and M. Zeman, “Design and comparison of a 10-kW interleaved boost converter for PV application using Si and SiC devices,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 5, No. 2, pp. 610-623, Jun. 2017.   DOI
14 A. Harrasi and A. F. Zobaa, "A cost-effective harmonic cancellation method for high-frequency silicon carbide MOSFET-based single phase inverter," IEEE Power Energy Technol. Syst. J., Vol.3, No. 4, pp. 128-142, Dec. 2016.   DOI
15 Y. Levron and R. W. Erickson, “High weighted efficiency in single-phase solar inverters by a variable-frequency peak current controller,” IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 248- 257, Jan. 2016.   DOI
16 T. Kerekes, R. Teodorescu, P. Rodriguez, G. Vazquez, and E. Aldabas, “A new high-efficiency single-phase transformerless PV inverter topology,” IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 184-191, Jan. 2011.   DOI
17 IEEE Standard 519-2014 Compliances, Updates, Solutions and Case Studies, pp. 1-49, https://www.schneider-electric. com. w/documents/Event/2016_electrical_engineering _seminar/IEEE_STD_519_1992vs2014.pdf.
18 B. Ji, J. Wang, and J. Zhao, “High-efficiency single-phase transformerless PV H6 inverter with hybrid modulation method,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 2104-2114, May 2013.   DOI
19 B. Gu, J. Dominic, J.-S. Lai, C.-L. Chen, T. LaBella, and B. Chen, “High reliability and efficiency single-phase transformerless inverter for grid-connected photovoltaic systems,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2235-2244, May 2013.   DOI
20 D. Istardi, B. Halim, and A. J. Febriansyah, "High efficiency single phase inverter design," in Proc. EECSI, pp. 1-5, 2017.
21 H. Ramirez-Murillo, C. Restrepo, T. Konjedic, J. Calvente, A. Romero, C. R. Baier, and R. Giral, "An efficiency comparison of fuel-cell hybrid systems based on the versatile buck-boost converter," IEEE Trans. Power Electron., Vol. 33, No. 2, pp- 1237-1245, Feb. 2018.   DOI
22 H. N. Le and J.-I. Itoh, “Wide-load-range efficiency improvement for high-frequency SiC-based boost converter with hybrid discontinuous current mode,” IEEE Trans. Power Electron., Vol. 33, No. 2, pp. 1843-1854, Feb. 2018.   DOI
23 J.-K. Han, J.-W. Kim, and G.-W. Moon, “A high-efficiency asymmetrical half-bridge converter with integrated boost converter in secondary rectifier,” IEEE Trans. Power Electron., Vol. 32, No. 11, pp. 8237-8242, Nov. 2017.   DOI
24 K. Mozaffari and M. Amirabadi, "A multifunction series inductive AC-link universal power converter with reducedswitch count," in IEEE Conference Proc. APEC, pp. 442-449, 2018.
25 X.-E. Hong, J.-F. Wu, and C.-L. Wei, “98.1% efficiency hysteretic-current-mode noninverting buck-boost DC-DC converter with smooth mode transition,” IEEE Trans. Power Electron., Vol. 32, No. 3, pp. 2008-2017, Mar. 2017.   DOI
26 M. Amirabadi and S. A. K. H. M. Niapour, “Extremely sparse parallel AC-link universal power converters,” IEEE Trans. Ind. Appl., Vol. 52, No. 3, pp. 2456-2466, Feb. 2016.   DOI
27 M. Amirabadi, H. A. Toliyat, and J. Baek, “Ultra sparse AC-link converters,” IEEE Trans. Ind. Appl., Vol. 51, No. 1, pp. 448-458, Jul. 2015.   DOI
28 M. Amirabadi, "A new class of universal power converters," in IEEE Conference Proc. ECCE, pp. 2596-2602, 2015.
29 M. Amirabadi, "Analog control of the ac link universal power converters: The key to very high frequency AC link conversion systems," in IEEE Conference Proc. APEC, pp. 2301-2308, 2015.
30 M. Shousha, D. Dinulovic, and M. Haug, "A universal topology based on buck-boost converter with optimal resistive impedance tracking for energy harvesters in battery powered applications," in IEEE Conference Proc. APEC, pp. 2111-2115, May. 2017.