• Title/Summary/Keyword: Output feedback system

Search Result 782, Processing Time 0.026 seconds

Synthesis on External Feedback Loop of Oculomotor Control System (안구제어계의 외부귀환 루우프 구성)

  • 박상희;김성환
    • 전기의세계
    • /
    • v.26 no.4
    • /
    • pp.54-60
    • /
    • 1977
  • The feedback sources of oculomotor control system consist of three types of feedback path originating from retinal image displacement, in the proprioceptive fibers of the extraocular muscles, in the efference copy within the C.N.S. From above feedback loops, the retinal image feedback path is a main subject in this experiment. The electrical output of eye ball motion detecting with a photo-electric matrix method is fed into galvanometer through the external feedback path, and the stability was also examined.

  • PDF

Optimal Output Tracking Control Simulation for Thrust Control of an Open-cycle Liquid Propellant Rocket Engine (개방형 액체로켓엔진의 추력제어를 위한 최적출력 추종제어 시뮬레이션)

  • Cha, Jihyoung;Cho, Woosung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.52-60
    • /
    • 2020
  • This paper deals with an optimal output tracking control for open-cycle liquid propellant rocket engine. For this purpose, we modeled simplified mathematical model of open-cycle liquid propellant rocket engine and designed optimal output feedback control system using combustion chamber pressure. For design the closed-loop system of open-cycle liquid propellant rocket engine, we designed optimal output feedback linear quadratic tracking control system using the linearized model and demonstrated the performance of the controller through numerical simulation.

Input-Ouput Linearization and Control of Nunlinear System Using Recurrent Neural Networks (리커런트 신경 회로망을 이용한 비선형 시스템의 입출력 선형화 및 제어)

  • 이준섭;이홍기;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.185-188
    • /
    • 1997
  • In this paper, we execute identification, linearization, and control of a nonlinear system using recurrent neural networks. In general nonlinear control system become complex because of nonlinearity and uncertainty. And though we compose nonlinear control system based on the model, it is difficult to get good control ability. So we identify the nonlinear control system using the recurrent neural networks and execute feedback linearization of identified model, In this process we choose the optional linear system, and the system which will have to be feedback linearized if trained to follow the linearity between input and output of the system we choose. We the feedback linearized system by applying standard linear control strategy and simulation. And we evaluate the effectiveness by comparing the result which is linearized theoretically.

  • PDF

Decentralized Dynamic Output Feedback Controller for Discrete-time Nonlinear Interconnected Systems via T-S Fuzzy Models (이산 시간 비선형 상호 결합 시스템의 T-S 퍼지 모델을 위한 분산 동적 출력 궤한 제어기 설계)

  • Koo, Geun-Bum;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.780-785
    • /
    • 2007
  • This paper proposes the decentralized dynamic output feedback controller for discrete-time nonlinear interconnected systems using Takagi-Sugeno (T-S) fuzzy model. Through T-S fuzzy model of each subsystem, the decentralized dynamic output feedback controller is designed. By the closed-loop subsystems with controller, it represents the linear matrix inequality (LMI) for stability of whole interconnected system. The value of control gain are obtained by LMI. An example is given to show the experimentally verification discussed throughout the paper.

Decentralized Output-feedback Stabilization of Linear Time-invariant Interconnected Systems with Delays

  • Shim, Duk-Sun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.158-162
    • /
    • 1998
  • We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H$\infty$ control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system.

  • PDF

Nonlinear Controller and Observer Design for Ball and Beam (볼빔에 대한 비선형 제어기 및 관측기 설계)

  • 임규만
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, We proposed the nonlinear controller and observer design for a ball and beam system. Unfortunately, for the ball and beam system, the control coefficient is zero whenever the angular velocity or ball position are zero. Therefore, the relative degree of the ball and beam system is not well defined. The presented the nonlinear controller and observer design is based on the approximation input-output feedback linearization. And we verified that the proposed nonlinear controller and observer scheme is the feasible through a computer simulation.

  • PDF

Reference Model Feedback Control and Stability Evaluation for Control System with Hard Non-linearities (견비선형을 갖는 제어시스템에 대한 기준모델 피드백제어 및 안정성평가)

  • Jung, Yu-Chul;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-78
    • /
    • 2006
  • The paper proposes reference model error feedback control scheme for motion control system with hard non-linear components as like saturation and dead-zone in plant input part. Additionally, the plant has the system uncertainty effected by plant model parameter deviation and disturbance. The control algorithm uses the reference model to apply additional feedback loop with the error between reference model output and actual output effected by disturbance and non-linear components. And the stability evaluation based on Popov stability and controller design method are formulated to be performed. The effectiveness of the proposed scheme is examined by simulations. The results are proven by reasonable performances following reference model responses with good disturbance rejection performance without over-tuning of controller.

Reduced-order Controller Design using Projective Controls (투영제어 기법을 이용한 제어기의 저차수화 설계)

  • Sang-Woo Nam
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.7
    • /
    • pp.943-951
    • /
    • 1995
  • In this paper the projective controls, previously derived to preserve the dynamic modes of a state-feedback reference system, are extended to allow the preservation of the modes of a general output-feedback reference system. In general, the extension allows projective controls to be used as a controller approximation technique, where a reduced-order controller is designed to approximate the closed-loop behavior of the higher-order reference controller. This extension is useful if the best available reference control for the system is an output-feedback control. An example shows that the increased design freedom of proposed design method allows the stabilization of a given plant using a lower-order controller than the projective controls with state-feedback reference.

  • PDF

A Design Scheme of Controller Using Output Feedback Closed-loop Pole Shifting (출력궤환 페루프 극 이동에 의한 제어계 설계 기법)

  • 이창구;황형수;김성중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.221-227
    • /
    • 1987
  • Other problems associated with pole placement have been discussed. A simple algorithm for output feedback pole shifting has been developed. The algorithm is based on minimising an objective function which is the sum of the exponential of the real part of the system colsed loop eigenvalues. It is demonstrated that the algorithm is simple and effective in arriving at a suitable feedback matrix for the control of boiler using only two measurement.

  • PDF

State Feedback Control by Adaptive Observer for Plants with Unknown Disturbance

  • Araki, Kazutoshi;Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Makino, Tomoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.48.3-48
    • /
    • 2002
  • 1) Linear state feedback control design problem for plant with unknown deterministic disturbance is considered and a method to realize state feedback by using adaptive observer which estimates the unknown disturbance simultaneously is proposed. 2) From the viewpoint of practical application, we propose an extended adaptive observer with direct plant path from input to output, which is necessary to use the acceleration type sensors as plant output. 3) Theoretical result is confirmed by numerical simulation of 1-DOF vibration control system.

  • PDF