• Title/Summary/Keyword: Output energy

Search Result 2,839, Processing Time 0.028 seconds

Calculation Method of Dedicated Transmission Line's Meteological Data to Forecast Renewable Energy (신재생에너지 예측을 위한 송전선로의 계량 데이터 계산 방법)

  • Ja-hyun, Baek;Hyeonjin, Kim;Soonho, Choi;Sangho, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.55-59
    • /
    • 2022
  • This paper introduce Renewable Energy forecasting technology, which is a part of renewable management system. Then, calculation method of dedicated transmission line's meteorological data to forecast renewable energy is suggested. As the case of dedicated transmission line, there is only power output data combined the number of renewable plants' output that acquired from circuit breakers. So it is need to calculate meteorological data for dedicated transmission line that matched combined power output data. this paper suggests two calculation method. First method is select the plant has the largest capacity, and use it's meteorological data as line meteorological data. Second method is average with weight that given according to plants' capacity. In case study, suggested methods are applied to real data. Then use calculated data to Renewable forecasting and analyze the forecasting results.

Output Characteristics of Small Wind Power Generator Applying Multi-Layered Blade (다층형 블레이드를 적용한 소형 풍력발전기의 출력특성)

  • Lee, Min-Gu;Park, Wal-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.663-667
    • /
    • 2017
  • Fuel depletion and environmental problems due to the use of fossil fuels have been worsening of late, and the development of alternative energy sources is urgently required to address these problems. Among the alternative energy sources, wind energy is attracting much attention as a clean energy source, because it can be used unlimitedly without any pollutant emissions. In wind power generation, wind energy is converted to kinetic energy through rotor blades and this kinetic energy is converted to electric energy through generators. The design and manufacturing of the blades, which are the major parts of wind power generators, are very important, but South Korea still lacks the requisite basic data and key technologies and, therefore, has to import the blades from overseas. In this study, multi-layered blades capable of generating power at low wind speeds were applied to a small wind power generator and the output characteristics of the generator according to the wind speed and the number of blades were analyzed. As a result, at the maximum wind speed of 8m/s, the application of three blades achieved up to 33% and 18% higher generator output voltage, up to 33% and 15% higher generator output current, and up to 23% and 13% higher generator RPM than the application of one or two blades, respectively. In this study, the application of multi-layered blades to a small wind power generator was shown to improve the output characteristics of the generator and make the collection of electric energy possible even at low wind speeds.

Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device (탄도형 충격파 치료기의 음향 출력 시험을 위한 Dry Test Bench의 신뢰성 및 유용성)

  • Jeon, Sung Joung;Lee, Min Young;Kwon, Oh Bin;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.589-600
    • /
    • 2022
  • In order to verify the reliability of Dry Test Bench (DTB) used for testing the output energy from ballistic extracorporeal shock wave therapeutic devices, the measurements with DTB were compared with the acoustic energy measured with a Laser Doppler Vibrometer (LDV) for a commercial ballistic ESWT device. It was shown that the mechanical energy detected with DTB had variability maintained within 5 % at the same output power setting and also had a linear correlation (adj. R2 = 0.991) with the acoustic energy measured with the LDV for the entire output power settings. Using the correlation between the two methods and the correlation on the acoustic energy measured in between air and water with the LDV, the DTB measurement can be used to estimate the energy flux density in water with an average error of 7.85 % for the entire output power settings of the ballistic shock wave generator considered in the experiment. DTB provides information limited to the output mechanical energy and therefore it is not suitable for testing the various acoustic output parameters required in IEC61846 and IEC63045. However, DTB that is simple in measurement principles and easy to use is expected for manufacturers and clinical users to monitor the performance of ballistic Extracorporeal Shock Wave Therapy (ESWT) devices.

A Study on the Output Characteristics According to the Cell Electrode Pattern for a Large-area Double-sided Shingled Module (대면적 양면형 슁글드 모듈을 위한 셀 전극 패턴에 따른 출력 특성에 관한 연구)

  • Seungah, Ur;Juhwi, Kim;Jaehyeong, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2022
  • Double-sided photovoltaic (PV) modules have received significant attention in recent years as a technology that can achieve higher annual energy production rates than single-sided modules. The shingled technology is a promising method for manufacturing high-density and high-power modules. These modules are divided by laser and joined with electrically conductive adhesives. The output efficiency of the divided cells depends on the division pattern and the electrode pattern, making it important to understand the output characteristics. In this study, the output characteristics of large-area double-sided light-receiving shingled cells with different split patterns and electrode patterns were investigated. The M6 size, with 6 divisions in the electrode pattern, had the highest efficiency when using 142 front fingers and 146 rear fingers. The M10 size, with 7 divisions, had the highest output when using 150 fingers equally in the front and rear. The M12 size, also with 7 divisions, showed the highest output characteristics when using 192 front fingers and 208 rear fingers.

Current-Voltage Measurement Behavior of the CIGS Solar Module through the Evaluation of KS C 8562 Standard (KS C 8562 평가를 통한 CIGS 태양광모듈의 출력 거동 분석)

  • Kyung Soo Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.41-47
    • /
    • 2024
  • CIGS solar cells are thin film solar cells that have excellent light absorption coefficient and can be manufactured with high efficiency through the use of low materials. In Korea, they must pass KS certification for home and commercial installation. KS C 8562 is a standard for evaluating the durability of CIGS and thin film amorphous silicon solar modules and deals with contents such as light, temperature, humidity, and mechanical durability. Unlike general crystalline silicon solar modules, the CIGS solar module has a different behavior of output change through these environmental tests, so if it shows 90% or more of the rated output suggested by the manufacturer after the final test, it is judged to be a suitable product. In this paper, the output before and after individual tests was measured through the test method of KS C 8562 to observe the output change and to discover the vulnerabilities of the CIGS solar module when exposed to various environments. Through this, it was confirmed that humidity exposure was the most vulnerable and that it had output recovery characteristics for light (visible light and ultraviolet rays). This study attempted to present the output behavior characteristics and data of the CIGS module at the time when the high efficiency thin film photovoltaic module market is expected to be created in the future.

A Study on Energy Recovery Circuit in Sputtering Plasma Power supply for arc Discharge Prevention (스퍼터용 플라즈마 전원장치의 아크방지를 위한 에너지 회생회로에 대한 연구)

  • Ban, Jung-Hyun;Han, Hee-Min;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.116-121
    • /
    • 2012
  • Recently, in the field of renewable energy such as solar cells including the semiconductor and display industries, thin film deposition process is being diversified. Furthermore, to deal with trend of making high-quality and fast, the high-capacity and output plasma power supply which can control high density plasma is required. The biggest problem is arc discharge caused by using high voltage power supply. Thus, the key function of plasma power supply is to prevent arc discharge and there is a need to maintain the possible minimum arc energy. In DC sputtering power supply, on a periodic basis (-)voltage powering up is able to significantly reduce arcing, as well as arc discharge prevention, and maintaining uniform charge density. This conventional method for powering up (-)voltage requires heavy mutual inductance of the transformer to avoid distortion problem of the output voltage. This study is about energy recovery circuit for arc discharge prevention in sputtering plasma power supply. By using energy recovery circuit, it is possible to reduce the mutual inductance and size of the transformer dramatically, prevent distortion of the output voltage and has a stable output waveform. This work was proved through simulation and experimental study.

Induced Production Analysis for Photovoltaic Power Generation Equipment in Korea using Input-Output Table 2009 (산업연관표 2009를 이용한 태양광발전설비산업의 생산유발효과분석)

  • Kim, Yoon-Kyung
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.8-17
    • /
    • 2012
  • The Korean government pushed ahead various policies to disseminate photovoltaic (PV), wind power, small hydro, bio-fuel, etc. Renewable energy system (RES) budget of the Korean government increased from 118 billion won of 2003 to 876.6 billion won of 2010. The R&D budgetary supports for RES increased by 6.8 times in the period 2003-2010. It is necessary to confirm RES budget expenditure that renewable energy promotion policy makes good performance evaluated in quantity level. This paper made Input-Output Table 2009 contains photovoltaic power generation equipment industry as a dependent sector and analyzed induced production effect by demand of photovoltaic power generation equipment industry. From the empirical analysis result, additional demand in photovoltaic power generation equipment induced 1.932 times of induced production in Korea. Each of industry sector has positive induced production from the additional demand in photovoltaic power generation equipment. Renewable energy promotion in photovoltaic power generation is considered together with industry policy as the option to sustain economic growth.

Analyzing effects of the BESS for wind farm in Jeju Island (제주지역 풍력발전단지의 BESS 적용효과 분석)

  • Lee, Doheon;Kim, Eel-Hwan;Kim, Ho-Min;Kim, Seung Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.67-74
    • /
    • 2014
  • The fluctuation of the output power of wind farms will be able to cause the impact on the Jeju power system such as power quality and stability. To settle the matter, many researchers have proposed the use of the BESS(Battery Energy Storage System) in the wind farm. In this paper, The BESS is applied to each wind farms for mitigating the fluctuation of wind power output. The BESS is controlled for smoothing the output of wind farms. Two kinds of simulation will be carried out. First, the simulation results by using PSCAD/EMTDC simulation program are compared to the measured data from the real power grid in Jeju Island. The other is to analyze the output of wind farms when the BESS is applied to the simulation works. The simulation results will demonstrate the effectiveness of using BESS to stabilize for power grid in Jeju Island.

Measuring the Economic Impacts of Hydrogen Economy in South Korea: An Input-output Approach (산업연관분석을 이용한 수소경제의 경제적 파급 효과 분석)

  • SU-BIN CHOI;JU-HEE KIM;SEUNG-HOON YOO
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.398-412
    • /
    • 2023
  • The Korean government is actively promoting the hydrogen industry as a key driver of economic growth. This commitment is evident in the 2019 hydrogen economy activation roadmap and the 2021 basic plan for hydrogen economy implementation. This study quantitatively analyzes the economic impact of the hydrogen economy using input-output analysis based on the Bank of Korea's 2019 input-output table, projecting its size by 2050. Four parts dealt with production-inducing, value-added creation, employment-inducing, and wage-inducing based on a demand-driven model. The results reveal that transportation had the most remarkable economic effect throughout the hydrogen economy, and production was the least. The hydrogen economy is projected to reach 71.2 trillion won by 2050.

An Auto-Switching Energy Harvesting Circuit Using Vibration and Thermoelectric Energy (진동과 열에너지를 이용한 자동 스위칭 에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.210-218
    • /
    • 2015
  • In this paper an auto-switching energy harvesting circuit using vibration and thermoelectric energy is proposed. Since the maximum power point of a thermoelectric generator(TEG) output and a vibration device(PEG) output is 1/2 of their open-circuit voltage, an identical MPPT controller can be used for both energy sources. The proposed circuit monitors the outputs of the TEG and PEG, and chooses the energy source generating a higher output voltage using an auto-switching controller, and then harvests the maximum power from the selected device using the MPPT controller. The proposed circuit is designed in a $0.35{\mu}m$ CMOS process and its functionality has been verified through extensive simulations. The designed chip occupies $1.4mm{\times}1.2mm$ including pads.