DOI QR코드

DOI QR Code

Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device

탄도형 충격파 치료기의 음향 출력 시험을 위한 Dry Test Bench의 신뢰성 및 유용성

  • 전성중 (제주대학교 의공학협동과정) ;
  • 이민영 ((주)에이치엔티메디칼) ;
  • 권오빈 (제주대학교 의공학협동과정) ;
  • 김종민 (제주대학교 의공학협동과정) ;
  • 최민주 (제주대학교 의공학협동과정)
  • Received : 2022.07.26
  • Accepted : 2022.09.15
  • Published : 2022.09.30

Abstract

In order to verify the reliability of Dry Test Bench (DTB) used for testing the output energy from ballistic extracorporeal shock wave therapeutic devices, the measurements with DTB were compared with the acoustic energy measured with a Laser Doppler Vibrometer (LDV) for a commercial ballistic ESWT device. It was shown that the mechanical energy detected with DTB had variability maintained within 5 % at the same output power setting and also had a linear correlation (adj. R2 = 0.991) with the acoustic energy measured with the LDV for the entire output power settings. Using the correlation between the two methods and the correlation on the acoustic energy measured in between air and water with the LDV, the DTB measurement can be used to estimate the energy flux density in water with an average error of 7.85 % for the entire output power settings of the ballistic shock wave generator considered in the experiment. DTB provides information limited to the output mechanical energy and therefore it is not suitable for testing the various acoustic output parameters required in IEC61846 and IEC63045. However, DTB that is simple in measurement principles and easy to use is expected for manufacturers and clinical users to monitor the performance of ballistic Extracorporeal Shock Wave Therapy (ESWT) devices.

탄도형 체외 충격파 치료기의 출력 에너지를 측정하는 Dry Test Bench(DTB)의 신뢰성을 검증하기 위해, 상용 탄도형 충격파 치료기에 대해 Laser Doppler Vibrometer(LDV)로 측정된 충격파의 음향 에너지와 비교했다. 실험 결과, DTB로 측정된 역학적 에너지는, 동일한 출력 설정에서, 5 % 이내의 변동성을 보이며, 치료기의 전 출력 설정 범위에서 LDV로 측정된 충격파의 음향 에너지와 선형적인 상관성(adj. R2 = 0.991)을 확인했다. 두 측정 방법의 상관성과, LDV을 이용하여 공기 및 수중에서 측정된 충격파 음향 에너지의 상관성(adj. R2 = 0.995)을 통합하면, DTB 측정으로부터 수중에서 발생된 충격파의 energy flux density를 평균 7.85 % 오차로 추정된다. DTB는 치료기의 출력에너지에 대한 정보만 제공하기 때문에, IEC61846 및 IEC63045에서 요구하는 다양한 충격파의 음향 출력을 시험하는 도구로 적합하지 않다. 그러나 측정 원리가 단순하고 사용이 용이한 DTB는 제조사 및 사용자가 탄도형 Extracorporeal Shock Wave Therapy(ESWT) 치료기의 성능을 관리하는 목적으로 유용하게 사용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부, 산업통상자원부, 보건복지부, 식품의약품안전처)의 재원으로 범부처전주기의료기기연구개발사업단(과제고유번호: KD0000103G0003057)과 한국연구재단(과제고유번호: 2017R1A2B3007907)의 지원을 받아 수행된 연구임.

References

  1. M. J. Choi, S. C. Cho, D. G. Paeng, and K. I. Lee, "Extracorporeal shock wave therapy: Its acoustical aspects," J. Acoust. Soc. Kr. 29, 119-130 (2010).
  2. C. Chaussy, "The history of shockwave lithotripsy," in The History of Technologic Advancements in Handbook of Urology, edited by S. Patel, M. Moran, and S. Nakada (Springer, Cham, 2018).
  3. S. Y. Cho, O. B. Kwon, S. C. Kim, H. Song, K. Kim, and M. J. Choi, "Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology," Investigative and Clinical Urology, 63, 385 (2022). https://doi.org/10.4111/icu.20220059
  4. M. T. Do, T. H. Ly, M. J. Choi, and S. Y. Cho, "Clinical application of the therapeutic ultrasound in urologic disease: Part II of the therapeutic ultrasound in urology," Investigative and Clinical Urology, 63 (2021).
  5. E. Chung and R. Cartmill, "Evaluation of clinical efficacy, safety and patient satisfaction rate after lowintensity extracorporeal shockwave therapy for the treatment of male erectile dysfunction: an Australian first open-label single-arm prospective clinical trial," BJU International, 115, 4649 (2015).
  6. A. Bechara, A. Casabe, W. D. Bonis, and P. G. Ciciclia, "Twelve-month efficacy and safety of low-intensity shockwave therapy for erectile dysfunction in patients who do not respond to phosphodiesterase type 5 inhibitors," Sexual Medicine, 4, e225-e232 (2016). https://doi.org/10.1016/j.esxm.2016.06.001
  7. E. V. Kul'chavenya, S. Y. Shevchenko, and E. V. Brizhatyuk, Extracorporeal Shock Wave Therapy in Chronic Prostatitis (Urologiia, Mooscow, 2016), pp. 77-81.
  8. R. Zimmermann, A. Cumpanas, L. Hoeltl, G. Janetschek, A. Stenzl, and F. Miclea, "Extracorporeal shock- wave therapy for treating chronic pelvic pain syndrome: a feasilility study and the first clinical results," BJU International, 102, 976-980 (2008). https://doi.org/10.1111/j.1464-410X.2008.07742.x
  9. The International Society for Medical Shockwave Treatment (ISMST), https://www.shockwavetherapy.org/, (Last viewed July 10, 2022).
  10. S. McCure and C. Dorfmuller, "Extracorporeal shock wave therapy: theory and equipment," Clin. Tech. Equine Pract. 2, 348-357 (2003). https://doi.org/10.1053/j.ctep.2004.04.008
  11. M. J. Choi, S. J. Jeon, O. B. Kwon, M. Y. Lee, J. S. Cho, H. S. Kim, and E. H. Maeng, "Inspection on the acoustic output of the focused extracorporeal focused shock wave therapeutic devices approved by MFDS" (in Korean), J. Acoust. Soc. Kr. 39, (2020).
  12. S. R. Park, K. W. Jang, S-H. Park, H. S. Cho, C. Z. Jin, M. J. Choi, S. L. Yu, and B. H. Min, "The effect of sonication on simulated osteoarthritis. Part I: effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium," Ultrasound in Medicine & Biology, 31, 1551-1558 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.07.002
  13. I. S. Song, B. I. Choi, J. K. Han, H. K. Lee, Y. H. Park, Y. B. Yoon, W. Kim, and M. C. Han, "Piezoelectric lithotripsy of gallbladder stones: fragmentation rate vs stone size, number and character," J. Korean Radiol. Soc. 27, 813-816 (1991). https://doi.org/10.3348/jkrs.1991.27.6.813
  14. R. O. Cleveland, V. Parag. Chitnis, and S. R. McClure. "Acoustic field of a ballistic shock wave therapy device," Ultrasound in Medicine & Biology, 33, 1327-1335 (2007). https://doi.org/10.1016/j.ultrasmedbio.2007.02.014
  15. M. J. Choi and O. B. Kwon, "Temporal and spectral characteristics of the impulsive waves produced by a clinical ballistic shock wave therapy device," Ultrasonics, 110, 106238 (2021). https://doi.org/10.1016/j.ultras.2020.106238
  16. O. B. Kwon, K. J. Pahk, and M. J. Choi, "Simultaneous measurements of acoustic emission and sonochemical luminescence for monitoring ultrasonic cavitation," J. Acoust. Soc. Am. 149, 4477-4483 (2021). https://doi.org/10.1121/10.0005136
  17. M. J. Choi, J. Y. Lee, and E. J. Park, "First report on the persist time of the free radical produced by shock wave pulses employed in clinical ESWL," Ultrasonics Sonochemistry, 83, 105927 (2022). https://doi.org/10.1016/j.ultsonch.2022.105927
  18. IEC 61846, Ultrasonics - Pressure Pulse Lithotripters - Characteristics of Fields; First Edition, 1998.
  19. IEC 63045, Ultrasonics - Non Focusing Short Pressure Pulse Sources Including Ballistic Pressure Pulse Sources - Characteristics of Fields; First Edition, 2020.
  20. M. J. Choi, A. J. Coleman, and J. E. Saunders, "The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter," Physics in Medicine & Biology, 38, 1561-1573 (1993). https://doi.org/10.1088/0031-9155/38/11/002
  21. A. J. Coleman, M. J. Choi, and J .E. Saunders, "Detection of cavitation during clinical extracorporeal lithotripsy," J. Acoust. Soc. Am. 98, 2921 (1995).
  22. A. J. Coleman, M. J. Choi, and J. E. Saunders, "Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy," Ultrasound in Medicine & Biology, 22, 1079-1087 (1996). https://doi.org/10.1016/S0301-5629(96)00118-4
  23. G. S. Kang, S. Cho, A. J. Coleman, and M. J. Choi, "Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone," J. Acoust. Soc. Am. 135, 1139-1148 (2014). https://doi.org/10.1121/1.4863199
  24. M. J. Choi, G. Kang, and J. S. Huh, "Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device," BMEL, 7, 143-151 (2017).
  25. C. J. Lee, J. Y. Kim, S. H. Choi, and M. J. Kim, "A study on developing a new evaluation method and a testing guideline for extracorporeal shockwave using cavitation visualization," Regulatory Research on Food, Drug and Cosmetic, 13, 113-124 (2018).
  26. M. J. Choi, S. C. Cho, G. S. Kang, D. G. Paeng, K. I. Lee, M. Hodnett, B. Zeqiri, and A. J. Coleman, "Quantification of acoustic cavitation produced by a clinical extracorporeal shock wave therapy system," MPLB, 22, 809-814 (2008). https://doi.org/10.1142/S0217984908015425
  27. M. K. Jeong and M. J. Choi, "A novel approach for the detection of every significant collapsing bubble in passive cavitation imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 1288-1300 (2022). https://doi.org/10.1109/TUFFC.2022.3151882
  28. China Food and Drug Administration, Extracorporeal Pressure Wave Therapy Devices by Compressed Air, YY0950, 2015.
  29. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. In the 4th ed. (John Wiley & Sons, Hoboken, 2000), pp. 113-143.