• Title/Summary/Keyword: Output Trajectory Tracking

Search Result 51, Processing Time 0.03 seconds

Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule (2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어)

  • Kwak D.H.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

2-Input 2-Output ANFIS Controller for Trajectory Tracking of Mobile Robot (이동로봇의 경로추적을 위한 2-입력 2-출력 ANFIS제어기)

  • Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.586-592
    • /
    • 2012
  • One approach of the control of a nonlinear system that has gained some success employs a fuzzy structure in cooperation with a neural network(ANFIS). The traditional ANFIS can only model and control the process in single-dimensional output nature in spite of multi-dimensional input. The membership function parameters are tuned using a combination of least squares estimation and back-propagation algorithm. In the case of a mobile robot, we need to drive left and right wheel respectively. In this paper, we proposed the control system architecture for a mobile robotic system that employs the 2-input 2-output ANFIS controller for trajectory tracking. Simulation results and preliminary evaluation show that the proposed architecture is a feasible one for mobile robotic systems.

A study on the optimal tracking problems with predefined data by using iterative learning control

  • Le, Dang-Khanh;Le, Dang-Phuong;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1303-1309
    • /
    • 2014
  • In this paper, we present an iterative learning control (ILC) framework for tracking problems with predefined data points that are desired points at certain time instants. To design ILC systems for such problems, a new ILC scheme is proposed to produce output curves that pass close to the desired points. Unlike traditional ILC approaches, an algorithm will be developed in which the control signals are generated by solving an optimal ILC problem with respect to the desired sampling points. In another word, it is a direct approach for the multiple points tracking ILC control problem where we do not need to divide the tracking problem into two steps separately as trajectory planning and ILC controller.The strength of the proposed formulation is the methodology to obtain a control signal through learning law only considering the given data points and dynamic system, instead of following the direction of tracking a prior identified trajectory. The key advantage of the proposed approach is to significantly reduce the computational cost. Finally, simulation results will be introduced to confirm the effectiveness of proposed scheme.

Iterative Learning Control with Feedback Using Fourier Series with Application to Robot Trajectory Tracking (퓨리에 급수 근사를 이용한 궤환을 가진 반복 학습제어와 로보트 궤적 추종에의 응용)

  • ;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.67-75
    • /
    • 1993
  • The Fourier series are employed to approximate the input/output(I/O) characteristics of a dynamic system and, based on the approximation, a new learing control algorithm is proposed in order to find iteratively the control input for tracking a desired trajectory. The use of the Fourier approximation of I/O renders at least a couple of useful consequences: the frequency characteristics of the system can be used in the controller design and the reconstruction of the system states is not required. The convergence condition of the proposed algorithm is provided and the existence and uniqueness of the desired control input is discussed. The effectiveness of the proposed algorithm is illustrated by computer simulation for a robot trajectory tracking. It is shown that, by adding feedback term in learning control algorithm, robustness and convergence speed can be improved.

  • PDF

Robust missile autopilot design using a generalized singular optimal control technique (최적 제어 기법을 사용한 자동조종장치의 설계)

  • 백운보;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.498-502
    • /
    • 1986
  • A generalized singular linear quadratic control technique is developed to design an optimal trajectory tracking system. The output feedback control law is designed using this technique. The feedback gain matrix is synthesized to minimize tracking errors with pole placement capability to satisfy the control activity requirements. An applications to a bank-to-turn missile coordinated autopilot system design is presented.

  • PDF

Torque Trajectory Control of Interior PM Synchronous Motor Using Adaptive Input-Output Linearization Technique (적응 입출력 선형화 제어 기법을 이용한 매입형 영구 자석 동기 전동기의 토오크 궤적 제어)

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Kim, Hyun-Soo;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.578-581
    • /
    • 1996
  • A torque trajectory control of the IPM synchronous motor using an adaptive input-output linearization technique is proposed. The input-output linearization is performed using the estimated torque output with the knowledge of machine parameters. The linearized model gives the output torque error under the variation of the flux linkage. To give a good torque tracking in the presence of the flux linkage variation, the flux linkage will be estimated where the adaptation law h derived by the Popov's hyperstability theory and the positivity concept. This estimated value is also used for the generation of the d-axis current command for the maximum torque control. Thus, a good torque tracking and the exact maximum torque-per-current operation will be obtained.

  • PDF

Direct Learning Control for a Class of Multi-Input Multi-Output Nonlinear Systems (다입력 다출력 비선형시스템에 대한 직접학습제어)

  • 안현식
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.2
    • /
    • pp.19-25
    • /
    • 2003
  • For a class of multi-input multi-output nonlinear systems which perform a given task repetitively, an extended type of a direct leaning control (DLC) is proposed using the information on the (vector) relative degree of a multi-input multi-output system. Existing DLC methods are observed to be applied to a limited class of systems with the relative degree one and a new DLC law is suggested which can be applied to systems having higher relative degree. Using the proposed control law, the control input corresponding to the new desired output trajectory is synthesized directly based on the control inputs obtained from the learning process for other output trajectories. To show the validity and the performance of the proposed DLC, simulations are performed for trajectory tracking control of a two-axis SCARA robot.

Control of a Electro-hydraulic Servo System Using Recurrent Neural Network based 2-Dimensional Iterative Learning Algorithm in Discrete System (이산시간 2차원 학습 신경망 알고리즘을 이용한 전기$\cdot$유압 서보시스팀의 제어)

  • 곽동훈;조규승;정봉호;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.62-70
    • /
    • 2003
  • This paper deals with a approximation and tracking control of hydraulic servo system using a real time recurrent neural networks (RTRN) with 2-dimensional iterative learning rule. And it was driven that 2-dimensional iterative learning rule in discrete time. In order to control the trajectory of position, two RTRN with same network architecture were used. Simulation results show that two RTRN using 2-D learning algorithm is able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RTRN was very effective to control trajectory tracking of electro-hydraulic servo system.

Nonlinear Attitude Control for a Rigid Spacecraft by Feedback Linearization

  • Hyochoong Bang;Lee, Jung-Shin;Eun, Youn-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.203-210
    • /
    • 2004
  • Attitude control law design for spacecraft large angle maneuvers is investigated in this paper. The feedback linearization technique is applied to the design of a nonlinear tracking control law. The output function to be tracked is the quaternion attitude parameter. The designed control law turns out to be a combination of attitude and attitude rate tracking commands. The attitude-only output function, therefore, leads to a stable closed-loop system following the given reference trajectory. The principal advantage of the proposed method is that it is relatively easy to produce reference trajectories and associated controller.

Control of an experimental magnetic levitation system using feedforward neural network controller (앞먹임 신경회로망 제어기를 이용한 자기부상 실험시스템의 제어)

  • 장태정;이재환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1557-1560
    • /
    • 1997
  • In this paper, we have built an experimental magnetic levitation system for a possible use of control education. We have give a mathermatical model of the nonlinear system and have shown the stability region of the linearized system when it is controlled by a PD controller. We also proposed a neural network control system which uses a neural network as a feedforward controller thgether with a conventional feedback PF controller. We have generated a desired output trajectory, which was designed for the benefit of the generalization of the neural network controller, and trained the desired output trajectory, which was desigend for the benefit of the generalization of the neural netowrk controller, and trained a neural network controller with the data of the actual input and the output of the system obtained by applying the desired output trajectroy. A good tracking performance was observed for both the desired trajectiories used and not used for the neural network training.

  • PDF