• 제목/요약/키워드: Output Inductor

검색결과 482건 처리시간 0.024초

Passive Lossless Snubbers Using the Coupled Inductor Method for the Soft Switching Capability of Boost PFC Rectifiers

  • Kim, Ho-Sung;Baek, Ju-Won;Ryu, Myung-Hyo;Kim, Jong-Hyun;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.366-377
    • /
    • 2015
  • In order to minimize switching losses for high power applications, a boost PFC rectifier with a novel passive lossless snubber circuit is proposed. The proposed lossless snubber is composed of coupled inductors merged into a boost inductor. This method compared with conventional methods does not need additional inductor cores and it reduces extra costs to implement a soft switching circuit. Especially, the proposed circuit can reduce the reverse recovery current of output diode rectifiers due to the coupling effect of the inductor. During turn-on and turn-off operating modes, the proposed PFC converter operates under soft switching conditions with high power conversion efficiency. In addition, the performance improvement and analysis of the operating effects of the coupled inductors were also presented and verified with a 3.3 kW prototype rectifier.

상용(220V/60Hz)전원의 고조파 검출 방식의 비교 (The comparison of harmonic detection methods on the Power line)

  • 정동열;황환영;박종연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.883-886
    • /
    • 2004
  • The current harmonic detector consists of the load current detector and the notch filter. It obtains the harmonic current from the output of the load current detector using the Notch filter. The GIC in the notch filter is used instead of inductor to minimize the magnitude and phase characteristics variation caused by using twin-T notch filter and passive elements(inductor).

  • PDF

영전압 스위칭 풀 브릿지 토폴로지를 기반으로 한 새로운 단일 전력 단 역률개선 AC/DC 컨버터 (New Single Stage Power Factor Correction AC/DC Converter based on Zero Voltage Switching Full Bridge Topology)

  • 김태성;구관본;문건우;윤명중
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.352-357
    • /
    • 2003
  • A new single stage power factor correction(PFC) AC/DC converter based on zero voltage switching(ZVS) full bridge topology is proposed. Since the series-connected two transformers act as both output inductor and main transformer by turns, the proposed converter has a wide ZVS range without additional devices for ZVS. Furthermore, since there is no need to use an output inductor, the proposed converter features high power density. The proposed converter gives the good power factor correction and low line current harmonics distortion. A mode analysis and experiment results are presented to verify the validity of the proposed converter.

  • PDF

ZVS Center-Tapped Half-Bridge Zeta Converter with Reduced Output Filter Inductor Size

  • Lee, Jae-Bum;Park, Ki-Bum;Kim, Hyoung-Suk;Seong, Hyun-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.163-164
    • /
    • 2011
  • In this paper, a new half-bridge zeta converter employing a center-tapped rectifier is proposed. The proposed converter provides a bidirectional powering path in the rectifier. As a result, its improved rectifier voltage waveform reduces the output filter inductor size. Also, it maintains a wide ZVS range due to the characteristic of the conventional single-ended half-bridge zeta converter. The operational principles, the theoretical analysis, and the design considerations of the proposed converter are analyzed. To verify the performance of the proposed converter, experimental results from a 180W prototype are presented.

  • PDF

Output inductor-less active clamp forward converter employing current boost-up circuit for high power density adaptor

  • Lee, Keun-Wook;Choi, Seong-Wook;Lee, Byoung-Hee;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.403-405
    • /
    • 2008
  • This paper proposes an output inductor-less active clamp forward converter employing current boost-up circuit for high power density adaptor. By applying the proposed current boost-up circuit, the proposed converter has low conduction loss and low voltage ringing of the secondary rectifier. This paper presents the analysis of the proposed converter and a comparison between the proposed converter and the conventional converter through experiment.

  • PDF

부하변동과 인덕터 저항을 고려한 DC/DC 승압 컨버터의 개선된 PID 제어기 설계 (Design of an improved PID controller for DC/DC boost pourer converter with inductor resistance under load variation)

  • 김인혁;정구종;손영익
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.85-87
    • /
    • 2009
  • This paper presents a new PID controller for a DC/DC boost converter model that has a parasitic inductor resistance. In order to maintain the robust output regulation property under load variations the proposed controller is designed by using an additional state variable developed via a parallel-damped passivity-based control approach. Simulation results using Matlab/Simulink SimPowerSystems compare the performances of the proposed controller with a conventional PI controller for reference step changes and load uncertainties.

  • PDF

Three-Level SEPIC with Improved Efficiency and Balanced Capacitor Voltages

  • Choi, Woo-Young;Lee, Seung-Jae
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.447-454
    • /
    • 2016
  • A single-ended primary-inductor converter (SEPIC) features low input current ripple and output voltage up/down capability. However, the switching devices in a two-level SEPIC suffer from high voltage stresses and switching losses. To cope with this drawback, this study proposes a three-level SEPIC that uses a low voltage-rated switch and thus achieves better switching performance compared with the two-level SEPIC. The three-level SEPIC can reduce switch voltage stresses and switching losses. The converter operation and control method are described in this work. The experimental results for a 500 W prototype converter are also discussed. Experimental results show that unlike the two-level SEPIC, the three-level SEPIC achieves improved power efficiency with balanced capacitor voltages.

A Performance Comparison of the Current Feedback Schemes with a New Single Current Sensor Technique for Single-Phase Full-Bridge Inverters

  • Choe, Jung-Muk;Lee, Young-Jin;Cho, Younghoon;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.621-630
    • /
    • 2016
  • In this paper, a single current sensor technique (SCST) is proposed for single-phase full-bridge inverters. The proposed SCST measures the currents of multiple branches at the same time, and reconstructs the average inductor, capacitor, and load current in a single switching cycle. Since all of the branches' current in the LC filter and the load are obtained using the SCST, both the inductor and the capacitor current feedback schemes can be selectively applied while taking advantages of each other. This paper also analyzes both of the current feedback schemes from the view point of the closed-loop output impedance. The proposed SCST and the analysis in this paper are verified through experiments on a 3kVA single-phase uninterruptible power supply (UPS).

Class-F 구동회로를 사용하는 Class-E 전력 증폭기의 신뢰성 (Reliability Characteristics of Class-E Power Amplifier using Class-F Driving Circuit)

  • 최진호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권6호
    • /
    • pp.287-290
    • /
    • 2006
  • A class-E CMOS RF(Radio frequency) power amplifier with a 1.8 Volt power supply is designed using $0.25{\mu}m$ standard CMOS technology. To drive the class-E power amplifier, a Class-F RF power amplifier is used and the reliability characteristics are studied with a class-E load network. After one year of operating the power amplifier with an RF choke, the PAE(Power Added Efficiency) decreases from 60% to 47% and the output power decreases 29%. However, when a finite DC-feed inductor is used with the load, the PAE decreases from 60% to 53% and the output power decreases only 19%. The simulated results demonstrate that the class-E power amplifier with a finite DC-feed inductor exhibits superior reliability characteristics.

1.5V 60A급 VRM의 인덕터 손실 분석에 관한 연구 (A study on core loss analysis of 1.5V 60A class VRM)

  • 전현;이달우;안태영;최광보
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.449-451
    • /
    • 2005
  • In this paper, to report the experimental results the core losses of VRM inductor. The VRM, that has a output voltage 1.5V, output current 60A, maximum power of 90W. Experimental results verify, the VRM has a almost same data of fast transient response, a efficiency test with high flux and ferrite inductor. A maximum power conversion efficiency of the experimental VRM was measured at 92% within 0.2% load regulation.

  • PDF