• Title/Summary/Keyword: Outfitting

Search Result 75, Processing Time 0.025 seconds

Implementation of Unique ID Considering the Evolutional BOMs in Ship Outfitting Design (선박 의장 BOM의 진화를 반영하기 위한 고유 식별자 구현)

  • Kim, Seung-Hyun;Lee, Jang-Hyun;Suh, Heung-Won;Jeon, Jung-Ik;Kim, Kwang-Sik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.6
    • /
    • pp.449-459
    • /
    • 2010
  • Recently, not only marine PLM (Product Lifecycle Management) system but also an effective outfitting BOM (Bill of Material) management has been attracted by many shipyards. In particular, efficient outfitting design is being one of major issues in shipyards since most of currently designed marine vessels have more complex outfitting system than ever. Furthermore, each outfitting system has huge number of parts that should be arranged based upon the procurement and installation plan. Outfitting BOMs evolve into different forms according to the product development phases during basic design; detail design; and production design. Therefore, it is very difficult to maintain a consistent BOM data during the design phases. In order to express the evolution of product structures and the information of outfitting along the ship design, we suggested UID (Unique ID) code system. The UID (Unique ID) is used in order to create the relationship within evolutional BOMs of each design stage. It utilizes as the procedure of weight calculation for procurement BOM during each design stage. Thereafter, in order to demonstrate suggested outfitting BOM management technique, we suggested a prototype. In the prototype system, suggested features of outfitting BOM are implemented.

An Implementation Enterprise BOM for Marine Vessel of Pipe Equipment (선박 배관 설계를 위한 Enterprise BOM의 설계와 구현)

  • Kim, Seung-Hyun;Lee, Jang-Hyun;Kim, Kwang-Sik;Jeon, Jung-Ik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.41-51
    • /
    • 2011
  • Both enterprise information systems and CAD utilizes the BOM (Bill of Material) as the means of collaborative integration during the product design and production since the BOM has been commonly used for design, production planning, procurement, and production works. Therefore, BOM can be the referential data when it expresses not only the part lists but also product information required by product development process. Outfitting design is one of major design works in marine vessel design since marine vessels have various outfitting systems and huge number of parts. Also, the outfitting BOM has the evolutional forms that change from the initial design to the production design. In order to express the product information and part list in the enterprise BOM and the evolutional BOMs in each lifecycle, enterprise BOM of outfitting that consists of structure BOM and display BOM is suggested. Thereafter, we have developed the prototype of enterprise BOM in which some features of the outfitting BOM are implemented.

Integration of Ship Outfitting BOM with Lifecycle Stages (선박 의장 BOM을 Lifecycle을 고려한 BOM 통합 방안 연구)

  • Kim, Dae-Seok;Lee, Kyung-Ho;Lee, Jang-Hyun;Lee, Jung-Min;Lee, Kwang;Kim, Jin-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.187-196
    • /
    • 2011
  • Generally, BOM (Bill of Material) means a part list which is needed to manufacture or assemble a product or part. During manufacturing processes, BOM is inevitably required for most of enterprise processes such as design, procurement, production planning/control, resource planning, and financial works. Every manufacturing industry uses many kinds of BOM's that are adjusted to the requirement of functions of their work division. Moreover, BOM evolves in different forms according to the product development phases such as conceptual design; function design, detail design, and production design because it is necessary to use different product structures to keep product data generated throughout the lifecycle of a product. This includes all data and information related to the all the product development phases. Shipbuilding works also are processed and controlled based on BOM. However, effective maintenance of ship outfitting BOM data is getting difficult as the amount and complexity of data have increased due to variety and long lifecycle of ship. For the effective management of outfitting BOM data, two aspects must be considered. One is how to classify numerous BOMs type and the others how to display BOMs. So this study suggests a method to classify BOM types and propose two categories - Structure BOM, Display BOM. Base on this result, we propose the integrated ship outfitting BOMs model and analysis outfitting BOMs.

Analysis of Natural Frequency of Simple Steel Outfitting Structure in Engine Room (기관실 단순 철의장품 모델 고유 진동수 해석)

  • Jung, C.S.;Kim, D.S.;Cho, S.A.;Chang, S.I.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.106-111
    • /
    • 2006
  • The steel outfitting structures installed in engine room are vibrated by an excitation of the engine and the propeller. Vibration problems such as cracks and fitting breakages are mainly induced at the near range of the resonance. The excitation frequency estimation is possible by engines and propeller specifications, but the natural frequency of a steel outfitting structure is not easily estimated due to the complication and variety of the designed shape. This paper represents natural frequency data of simple steel outfitting structures. As a vibration analysis tool, MSC/NASTRAN was used to calculate natural frequencies. Natural frequencies were compared in case of the shape and boundary condition changes of simple models, and anti-vibration models of the steel outfitting structures were presented on the basis of results.

  • PDF

Scanned Drawing-based Production Management System for Deckhouse Floor Outfitting (스캔도면 기반 선실바닥의장 생산관리 시스템 개발)

  • Kang, In-Chang;Song, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.141-154
    • /
    • 2017
  • A production management system is developed to enhance both the information and productivity of ship and offshore plant deckhouse floor outfitting. The functions of the production management system for the deckhouse floor outfitting were reviewed based on a literature survey of several production management systems with respect to the ship building and architecture fields. This study investigated numerous daily production reports and their application to actual work places to utilize the system development. The developed scanned drawing-based production management (SDPM) system minimizes any loss and/or distortion of work information between the workshop and management office when applying a scanned production drawing to the daily report. The SDPM system increases the data objectivity, as well as intuitiveness of the information generation by adopting an efficient user interface, which makes it possible to perform image annotations on the scanned drawing for the daily production report while simultaneously interacting with the production management database. Applying the system operation to actual deckhouse floor covering work verified that it was feasible to use the SDPM system for production management in the ship outfitting work process.

Pipe Support Modeling & Fabrication Drawing Generation on GSCAD (Pipe Support Modeling 및 제작도 작성 GSCAD 적용 사례)

  • Min, Byung-Cheon;Park, Jung-Hyun;Kang, Young-Min;Kim, Eun-Sub
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.40-46
    • /
    • 2009
  • The GSCAD (Global Shipbuilding CAD) System used in Samsung Heavy Industries is based on the Relation and Rule. The design area where excellence of these Relation & Rule can be used fully is pipe support modeling. That's because, many rules are required to place a pipe support and it's supported by hull structural object. Samsung Heavy Industries has been customizing the Relation and Rule supported by SmarMarine3d(R) to model pipe support easily and satisfies standard. Also, the pipe support fabrication drawing program was developed to generate a drawing for the pipe support customized. This paper reviews the characteristics of pipe support modeling on GSCAD and the Rules customized also, fabrication drawing program will be introduced.

  • PDF

Semi-Rig, Anti-condensation design on steel surface in pontoon area (Semi-Rig, Pontoon 구역 표면 결로 예방 설계)

  • Seo, Dong-jae;Park, Sang-un;Noh, Joung-hwan;Shim, Hak-mu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.105-108
    • /
    • 2017
  • Condensation is one of the common issues which we can easily see in everyday life. For example, the surface of glasses with cold water is easily moisturized. This wet surface gives us uncomfortable feeling and is sometimes dangerous because it is slippery. As the safety on working space is one of the most important issue on offshore project, condensation is also important matter to take care of with precaution. Since the bottom of vessel or offshore facility is submersed in the water, the risk of having condensate on the steel surface is getting higher because sea water temperature is normally lower than ambient temperature. And if there is any electric equipment or person working in that space, condensation is normally not allowed. The pontoon of semi-submersible drilling rig is such a space which is submersed, with electric and mechanical equipments and person working periodically. To prevent condensation in pontoon, study was conducted by checking several cases.

  • PDF

A Study on the Development of Algorithm for Defining the Installation Sequence of Outfitting (의장재 설치 순서 결정을 위한 알고리즘 개발 연구)

  • Choi, Jaeho;Kim, Jihye;Woo, Jonghun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.368-377
    • /
    • 2017
  • Outfittings of offshore plants and high value-added vessels, such as FPSO, drillship, are much more than outfittings of general ships. So the complexity of the outfittings is increased and the importance of outfittings has also increased. But, there is no clear method to define the installation sequence of outfittings, yet. In this study, we developed the algorithm to define the installation sequence of outfittings by applying variables and constraints related to outfitting, such as process parameters, weighting coefficients, installation constraints. Also, we developed the application that applied the algorithm and compared cases by changing the weighting coefficients of process parameters. We verified the practicality of the algorithm by developing the application. The results of this study are that the accuracy of the outfitting planning is improved and efficient lead time can be predicted by defining the installation sequence of outfittings.

Process Improvements for Elevating Pre-outfitting Rate of FPSO (FPSO의 선행의장률 향상을 위한 생산관리 및 공법개선 사례연구)

  • Shin, Sung-Chul;Cho, Jong-Burm;Shin, Ki-Young;Kim, Soo-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.325-334
    • /
    • 2009
  • Generally, functional design of FPSO has been done by the engineering firm designated by ship owner. Main equipment such as topside facility is imported from abroad. But sometimes, OFE (Owner Furnished Equipment) does not satisfy the PND (Product Need Date) of each production stage because the delivery date of OFE is not scheduled to satisfy the PND. And sometimes many loose items and equipment are complex from engineering which does not consider pre-outfitting. Main objective of this study is process improvements by maximizing pre-outfitting rate in the stage of equipping STP (Submerged Turret Production), one of main equipment on FPSO. In this study, we analyzed the factors which obstructed pre-equipping STP using the past records of FPSO projects.

Establishment of Information Interface Technology between Hull and Outfitting Designs (선체설계와 의장설계간의 정보인터페이스 기법 연구)

  • Choi, Yeong-Tae;Suh, Heung-Won;Lee, Soon-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.458-465
    • /
    • 2013
  • Ship design engineering refers to the development and design of shipbuilding architectures in a drawing which reflects all relevant manufacturing processes. This paper provides analysis methods for model-information interfaces between hull structure design and outfitting design, and a technical application for manufacturing phases reflecting the pipe support pad and angle item automatically. The existing information procedure of pipe support pad and angle system processes information using drawing without model specification. Outfitting design team directly distributes drawings to the shop floor then manual-based marking and installation work are conducted refer to the distributed drawings. As a result, this process has become time consuming and causes problems in the productivity and quality improvement due to the rework caused by omitted or incorrect marking. The pipe support pad and angle marking is a method that automatically updates model information to hull structure design using sets of data that analyse the generated model in outfitting design processes. Therefore, this approach provides an efficient solution through design references without manual activities such as a reflection of hull structure design, cutting process, numerical control work, and dimension measurement and marking. The conversion of a method from the existing procedure based on manual marking to the reflective and automatic approach would have enabled to proceed installation work without manual activities for the measurement. Therefore, this research study proposes an efficient approach using pre-data analysis of model information interfaces between design and manufacturing phases to improve productivity during construction for shipbuilding.