• Title/Summary/Keyword: Outer voltage loop

Search Result 56, Processing Time 0.021 seconds

Design and control of Single Loop Output Voltage Controller for 3 Phase PWM Inverter (3상 PWM 인버터의 단일제어루프 전압제어기의 설계 및 제어)

  • Gang B.H.;Gho J.S.;Cho J.S.;Choe G.H.;Kwak C.H.;Kim J.H,
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.496-500
    • /
    • 2001
  • There are two ways in the output voltage control method in PWM inverter. One is the double loop voltage control composed of inner current control loop and outer voltage control loop. Because it shows fast response and low steady state error, utilized in many application. The Other is single loop voltage control method composed of voltage control loop only. It's characteristics shows lower performance in case of high output impedance than double loop voltage control. But in low output impedance, it shows good control performance in all load range than double loop control. In this paper, single loop voltage control rule and gain was developed analytically, and these were verified through computer simulation and experiment.

  • PDF

An Interleaved Five-level Boost Converter with Voltage-Balance Control

  • Chen, Jianfei;Hou, Shiying;Deng, Fujin;Chen, Zhe;Li, Jian
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1735-1742
    • /
    • 2016
  • This paper proposes an interleaved five-level boost converter based on a switched-capacitor network. The operating principle of the converter under the CCM mode is analyzed. A high voltage gain, low component stress, small input current ripple, and self-balancing function for the capacitor voltages in the switched-capacitor networks are achieved. In addition, a three-loop control strategy including an outer voltage loop, an inner current loop and a voltage-balance loop has been researched to achieve good performances and voltage-balance effect. An experimental study has been done to verify the correctness and feasibility of the proposed converter and control strategy.

Input Current Harmonic Reduction of Inverer TIG Welder (인버터 TIG용접기의 전원전류 고조파 저감)

  • 김준호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.560-563
    • /
    • 2000
  • In this paper we proposed AC/DC boost converter to improve input current harmonic reduction in TIG welder. The proposed harmonic reduction circuit with UC2854AN acting on constant switching frequency average current control has a three-loop control structure : the inner current loop the line voltage feed-forward loop and th outer voltage loop. Also we applied the constant current strategy on full bridge IGBT inverter to stabilized the output current using the analog PI controller. To demonstrate the practical significance of the proposed methods some simulation studies and experimental results are presented.

  • PDF

NONLINEAR OUTPUT VOLTAGE CONTROLOF PWM DC-DC CONBERTERS BY FEEDBACK LINERIZATION

  • Jo, Byeong-Rim;Min, Byung-Hoon;Choi, Hang-June
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.223-226
    • /
    • 1995
  • New output voltage control technique based on the simple feedback linearization is proposed. The system states are first divided into fast states and slow states. Then, the control stage is composed of the fast inner current control loop and the slow outer voltage control loop. From the inner loop, the average control is derived by the sliding mode concept and it is inserted into the dynamic equations of the slow states in the outer loop. Applying the feedback linearization technique to the obtained large-signal models of the PWM dc-dc converters, linearized large-signal models are obtained for the slow states. With this technique, the output voltage controller of the PWM dc-dc converters can be designed easily in the global state space and its control performance can also be much improved.

  • PDF

Two-loop Hysteretic Control of $3^{rd}$ Order Buck Converter

  • Veerachary, M.;Sharma, Deepen
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.310-317
    • /
    • 2007
  • In this paper, an analysis and hysteretic controller design of a $3^{rd}$ order buck converter is presented. The proposed hysteretic controller consists of an inner current-loop, just like the conventional cascade control scheme, and an outer voltage-loop for load voltage regulation. Although it is possible to include an inner current loop from different branches of the converter, from the feasibility and operational point of view, the load side capacitor current would be the better choice. The addition of an inner current-loop improves the dynamic performance of the converter while preserving the robustness of the hysteretic control. The controller formulation and closed-loop converter performance analysis are validated through computer simulations. Few experimental results of the proposed converter are given and compared with the buck converter.

Electrically Controllable Asymmetric Split-Loop Terahertz Resonator with Outer Square Loop (전기적 제어 가능한 외곽 사각 고리 추가형 테라헤르츠 비대칭 분리고리공진기)

  • Park, Dae-Jun;Ryu, Han-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • This paper proposes an asymmetric split-loop resonator with an outer square loop (ASLR-OSL), which can actively control terahertz wave transmission properties while maintaining a high-Q-factor of the asymmetric split-loop resonator (ASLR). An added outer square loop is designed to play the roles of both a metamaterial and a micro-heater, which can control the temperature through a directly applied bias voltage. A vanadium dioxide ($VO_2$) thin film, which exhibits an insulator-metal phase transition with temperature change, is used to control the transmission properties. The proposed ASLR-OSL shows transmission properties similar to those of the ASLR, and they can be successfully controlled by directly applying bias voltage to the outer square loop. Based on these results, an electrically controllable terahertz high-Q metamaterial could be achieved simply by adding a square loop to the outside of a well-known high-Q metamaterial.

Active Disturbance Rejection Control for Single-Phase PWM Rectifier with Current Decoupling Control

  • Yan, Ruitao;Wang, Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2354-2363
    • /
    • 2018
  • This paper proposed a novel double closed control strategy for single-phase voltage source pulse width modulation (PWM) rectifier based on active disturbance rejection control (ADRC) and dq current decoupling control. First, the mathematical model of the single-phase PWM rectifier in the d-q axis synchronous rotating reference frame is established by constructing a virtual component using a second-order generalized integrator (SOGI). Then, the mathematical model is simplified according to the active power conservation, and the first-order equation of single-phase PWM rectifier voltage outer loop is acquired. A linear auto-disturbance rejection controller is used to design the voltage outer loop according to the first-order equation. Finally, the proposed control strategy and the traditional PI control are compared and verified by simulation and physical experiments. Both simulation and experimental results confirm that the proposed control strategy has excellent dynamic performance and strong rejection ability to disturbances.

A New Robust SPMSM Control to Parameter Variations in Flux Weakening Region (약계자 영역에서 전동기 상수변동에 둔감한 SPMSM의 새로운 약계자 제어기)

  • Kim, Jang-Mok;Song, Jong-Hwan;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.264-268
    • /
    • 1999
  • A new implementation strategy for the flux weakening control of a Surface Mounted Permanent Magnet Synchronous Motor (SPMSM) is proposed. It is implemented based on the output of the synchronous PI current regulator-reference voltage to PWM inverter. The onset of flux weakening and the level of the d-axis current are adjusted by the outer voltage regulation loop to prevent the saturation of the current regulator. The characteristics of this flux weakening scheme include no dependency on the machine parameters, the guarantee of current regulation on any operating condition, and fast transition into and out of the flux weakening mode. Experimental results at various operating conditions including 4-quadrant operation are presented to verify the feasibility of the proposed control scheme.

  • PDF

Performance Improvement of Voltage-mode Controlled Interleaved Buck Converters

  • Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.104-108
    • /
    • 2005
  • This paper presents the performance improvement of voltage-mode controlled interleaved synchronous buck converters. This is a voltage-mode controlled scheme, where the controllers do not need an external saw-tooth generator for PWM generation and the loop design is easier. The controller implementation requires only a single error amplifier and gives almost current mode control performance. The control scheme uses voltage feedback with two loops similar to current mode control: one for the slow outer loop and the other for the faster inner PWM control loop. To improve the performance of the converter system a coupled inductor is used. This coupled inductor reduces the magnetic size and also improves the converter's transient performance without increasing the steady-state current ripple. The effectiveness of the proposed control scheme is demonstrated through PSIM simulations.

A Design of a High Performance UPS with Capacitor Current Feedback for Nonlinear Loads (비선형 부하에서 커패시터 전류 궤환을 통한 고성능 UPS 설계)

  • Lee, Woo-Cheol;Lee, Taeck-Kie
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.71-78
    • /
    • 2012
  • This paper presents a digital control solution to process capacitor current feedback of high performance single-phase UPS for non-linear loads. In all UPS the goal is to maintain the desired output voltage waveform and RMS value over all unknown load conditions and transient response. The proposed UPS uses instantaneous load voltage and filter capacitor current feedback, which is based on the double regulation loop such as the outer voltage control loop and inner current control loop. The proposed DSP-based digital-controlled PWM inverter system has fast dynamic response and low total harmonic distortion (THD) for nonlinear load. The control system was implemented on a 32bit Floating-point DSP controller TMS320C32 and tested on a 5[KVA] IGBT based inverter switching at 11[Khz]. The validity of the proposed scheme is investigated through simulation and experimental results.