Browse > Article
http://dx.doi.org/10.3807/KJOP.2017.28.2.059

Electrically Controllable Asymmetric Split-Loop Terahertz Resonator with Outer Square Loop  

Park, Dae-Jun (Department of Convergence Science, Sahmyook University)
Ryu, Han-Cheol (Department of Convergence Science, Sahmyook University)
Publication Information
Korean Journal of Optics and Photonics / v.28, no.2, 2017 , pp. 59-67 More about this Journal
Abstract
This paper proposes an asymmetric split-loop resonator with an outer square loop (ASLR-OSL), which can actively control terahertz wave transmission properties while maintaining a high-Q-factor of the asymmetric split-loop resonator (ASLR). An added outer square loop is designed to play the roles of both a metamaterial and a micro-heater, which can control the temperature through a directly applied bias voltage. A vanadium dioxide ($VO_2$) thin film, which exhibits an insulator-metal phase transition with temperature change, is used to control the transmission properties. The proposed ASLR-OSL shows transmission properties similar to those of the ASLR, and they can be successfully controlled by directly applying bias voltage to the outer square loop. Based on these results, an electrically controllable terahertz high-Q metamaterial could be achieved simply by adding a square loop to the outside of a well-known high-Q metamaterial.
Keywords
Metamaterial; Terahertz; Asymmetric split-loop resonator; Vanadium dioxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Kawase, Y. Ogawa, and Y. Watanabe, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Optics. Express 11, 2549-2554 (2003).   DOI
2 P. U. Jepsen, D. G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging - Modern techniques and applications," Laser Photon. Rev 5, 124-166 (2011).   DOI
3 M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).   DOI
4 J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with negative refractive index," Nature 455, 376-379 (2008).   DOI
5 D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-979 (2006).   DOI
6 M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature 470, 369-373 (2011).   DOI
7 C. Debus and P. H. Bolivar, "Frequency selective surfaces for high sensitivity terahertz sensing," Applied. Physics. Letters 91, 184102 (2007).   DOI
8 C. Jansen, A. I. Al-Naib. Ibraheem, N. Born, and M. Koch, "Terahertz metasurfaces with high Q-factors," Applied. Physics. Letters 98, 051109 (2011).   DOI
9 S. Yang, Z. Liu, X. Xia, E. Yiwen, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, "Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials," Physical. Review. B 93, 235407 (2016).   DOI
10 R. Singh, W. Cao, A. I. Al-Naib. Ibraheem, L. Cong, W. Withayachumnankul, and W. Zhang, "Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces," Applied. Physics. Letters 105, 171101 (2014).   DOI
11 H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).   DOI
12 R. Yan, B. S. Rodriguez, L. Liu, D. Jena, and H. G. Xing, "A new class of electrically tunable metamaterial terahertz modulators," Opt. Express 20, 28664-28671 (2012).   DOI
13 Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, "Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method," Opt. Express 22, 11070-11076 (2014).   DOI
14 J. H. Shin, K. H. Park, and H. C. Ryu, "Electrically controllable terahertz square-loop metamaterial based on $VO_2$ thin film," Nanotechnology 27, 195202 (2016).   DOI
15 H. C. Ryu, "Electrically controllable terahertz wave modulator based on a metamaterial and $VO_2$ thin film," K. J. Opt. Phot 25, 279-85 (2014).   DOI
16 P. Mandal, A. Speck, C. Ko, and S. Ramanathan, "Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition," Opt. Letters 36, 1927-1929 (2011).   DOI
17 S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, "Tunable DFB laser with a striped thin-film heater," IEEE. Photon. Technol. Lett 4, 321-323 (1992).   DOI
18 F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance," Nano letters 8, 3983-3988 (2008).   DOI