• Title/Summary/Keyword: Outdoor experiments

Search Result 266, Processing Time 0.023 seconds

Design and Implementation of a Micro-Modem for Underwater Acoustic Communications (수중 음향 통신을 위한 초소형 모뎀 설계 및 구현)

  • Jeon, Jun-Ho;Cho, Hun-Chul;Kim, Chang-Hwa;Ryuh, Young-Sun;Park, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.405-411
    • /
    • 2011
  • As the interest in ocean environment monitoring and ocean development has been increased, the need for researches on underwater wireless sensor network (UWSN) and low power consuming acoustic modem for UWSN has been arisen. In this paper, we design and implement a micro-modem equipped with a tiny and omnidirectional transducer for underwater acoustic communications. In addition, we make experiments in a water tank and a pond in order to verify the performance of the developed modem in terms of supply voltage and communication distance, and analyze the results. According to the outdoor experiments, the modem can send data wirelessly in underwater at a distance of 40 meter with a data rate of 200 bps and a bit error rate of $10^{-5}$ when the supply voltage is 12 V. Due to its small size, low power consumption and omnidirectional property, it is expected that the modem which is implemented in this paper could be utilized for various applications based on UWSN.

Application Verification of AI&Thermal Imaging-Based Concrete Crack Depth Evaluation Technique through Mock-up Test (Mock-up Test를 통한 AI 및 열화상 기반 콘크리트 균열 깊이 평가 기법의 적용성 검증)

  • Jeong, Sang-Gi;Jang, Arum;Park, Jinhan;Kang, Chang-hoon;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2023
  • With the increasing number of aging buildings across Korea, emerging maintenance technologies have surged. One such technology is the non-contact detection of concrete cracks via thermal images. This study aims to develop a technique that can accurately predict the depth of a crack by analyzing the temperature difference between the crack part and the normal part in the thermal image of the concrete. The research obtained temperature data through thermal imaging experiments and constructed a big data set including outdoor variables such as air temperature, illumination, and humidity that can influence temperature differences. Based on the collected data, the team designed an algorithm for learning and predicting the crack depth using machine learning. Initially, standardized crack specimens were used in experiments, and the big data was updated by specimens similar to actual cracks. Finally, a crack depth prediction technology was implemented using five regression analysis algorithms for approximately 24,000 data points. To confirm the practicality of the development technique, crack simulators with various shapes were added to the study.

Cooling Energy Saving System using Solar Heat Protection Dvices (일사차단용 설비를 이용한 냉방 에너지 절약 방안)

  • Jeong, Ky-Bum;Choi, Sang-Gon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.108-115
    • /
    • 2010
  • Global warming and heat island make the outdoor air temperature ascend. Tall office buildings are covered with glass window facades as a design aspect and the portion of window area to facade area is increasing. Hence, cooling load for solar radiation passing through glass window is rising. Cooling air to a certain room is supplied equally despite the face of the room in most office buildings. Especially, the west part of the office cannot maintain the required temperature that occupant needs because of the solar heat coming through windows.?In this study, we projected the water spray system to reduce the solar heat transfer and to reflect the solar ray through windows. We perform the experiments to evaluate the performance of the solar heat protection devices. We measured the room temperature of two separated office rooms for solar heat control devices. The investigation's results show that the water spray system is sufficient to the coated glass and the venetian blinds for the decrease of the solar heat inflow.

A Design of Mid-wave Infrared Integral Catadioptric Optical System with Wide FOV

  • Yu, Lin Yao;Jia, Hong Guang;Wei, Qun;Jiang, Hu Hai;Zhang, Tian Yi;Wang, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2013
  • In order to deduce the difficulty of fixing the Ritchey-Chretien (R-C) dual reflective optical system and enhance the stability of the secondary mirror, a compact integral structure is presented here composed of two transmitting and two reflective aspheric surfaces. The four surfaces were manufactured from a single germanium lens and integrated together. The two reflective surfaces formed by coating the inner reflecting films were assembled in one lens. It makes the installation of the two mirrors easier and the structure of the secondary mirror more stable. A design of mid-wave infrared (MWIR) compact imaging system is presented with a spectral range chosen as $3.7-4.8{\mu}m$. The effective focal length is f=90 mm. The field of view (FOV) for the lens is $4.88^{\circ}$. It has good imaging capability with Modulation Transfer Function (MTF) of all field of view more than 0.55 close to the diffraction limitation. Outdoor experiments were carried out and it is shown that the integral catadioptric optical system performs well on imaging.

Video smoke detection with block DNCNN and visual change image

  • Liu, Tong;Cheng, Jianghua;Yuan, Zhimin;Hua, Honghu;Zhao, Kangcheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3712-3729
    • /
    • 2020
  • Smoke detection is helpful for early fire detection. With its large coverage area and low cost, vision-based smoke detection technology is the main research direction of outdoor smoke detection. We propose a two-stage smoke detection method combined with block Deep Normalization and Convolutional Neural Network (DNCNN) and visual change image. In the first stage, each suspected smoke region is detected from each frame of the images by using block DNCNN. According to the physical characteristics of smoke diffusion, a concept of visual change image is put forward in this paper, which is constructed by the video motion change state of the suspected smoke regions, and can describe the physical diffusion characteristics of smoke in the time and space domains. In the second stage, the Support Vector Machine (SVM) classifier is used to classify the Histogram of Oriented Gradients (HOG) features of visual change images of the suspected smoke regions, in this way to reduce the false alarm caused by the smoke-like objects such as cloud and fog. Simulation experiments are carried out on two public datasets of smoke. Results show that the accuracy and recall rate of smoke detection are high, and the false alarm rate is much lower than that of other comparison methods.

Implementation of Appliance Control System Using Smart Phone (스마트폰을 이용한 정보가전기기 제어시스템 구현)

  • Jeon, Byung-Chan;Choi, Gyoo-Seok;Lee, Sang-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • With the rapid increase of recent smart phone diffusion, the convergences of home network environments and intelligent home appliances such as digital TV, internet refrigerator, DVD, digital video, communication appliance using a smart phone are highly focussed and become the recent trends in IT industry. In this paper, we design and implement home appliance control system based on the smart phone(Android) network environments. Through several experiments using Android smart phone, we confirmed that the proposed system can control and monitor indoor home appliances conveniently anywhere and anytime from outdoor.

Indoor Localization based on Multiple Neural Networks (다중 인공신경망 기반의 실내 위치 추정 기법)

  • Sohn, Insoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.378-384
    • /
    • 2015
  • Indoor localization is becoming one of the most important technologies for smart mobile applications with different requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the conventional methods and achieves very accurate estimation results even in environments with a low number of APs.

A Study on the Performance Test and Verification of Heat Transfer characteristics in Automobile Rear Window Heater (자동차 후면 유리 열선의 열전달특성에 따른 성애제거 성능평가 및 성능검증 방법에 관한 연구)

  • Juen, H.Y.;Lee, C.K.;Bae, H.J.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • Both theoretical and experimental investigations were conducted to analyze defrosting behavior of a window heater operating in the low outdoor temperature($-20^{\circ}C$). To achieve this purpose, first a warm-chamber experiment($23^{\circ}C$) was performed to measure inner and outer surface temperature of the rear window(heated by the electric heater supplying 195 W) as functions of both time and position. Secondly, a cold chamber experiment was made to continuously record defrosting process of the frosted window. From the comparisons of the two experimental results, it was found that there was a similarity between the spatial distributions of both temperature and remaining frost. Thus, the temperature data from the warm-chamber experiments can be utilized to predict an expected zone covered with remaining frosts, and this approach can also be adopted in the inspection process in order to economically guarantee optimized performance of the window heater. Finally, an analytical model based on one-dimensional, steady-state heat transfer theories was proposed and successfully predicted the outer surface temperature of the rear window surrounded by cold air($-20^{\circ}C$) for the given operating conditions(heater power, inside and outside heat transfer coefficients, and surrounding air temperature, etc.).

  • PDF

A Study on the Application of VAV/BPFS(Variable-Air-Volume/Bypass Filtration System) for Indoor Air Environment (VAV/BPFS(Variable-Air-Volume/Bypass Filtration System) 의 실내환경 적응에 관한 연구)

  • 최성우
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1235-1243
    • /
    • 2003
  • Under controlled conditions in an environmental chamber, 24 experiments were performed to compare the ability of a Variable-Air-Volume/Bypass Filtration System(VAV/BPFS) to remove indoor pollutants and to conserve energy with the ability of conventional Variable Air Volume(VAV) system. The specific conclusions of this paper were; first, the VAV/BPFS was more efficient than the VAV system in removing particulate matter, TVOC, and target VOCs. The total effective removal rate of PM for the VAV/BPFS was two times as high as that of the VAV system. The total effective removal rate of TVOC for the VAV/BPFS was 20 percent higher than that of the VAV system. Also each target VOC concentration was reduced by using the VAV/BPFS. Second, clean air delivery rate was increased by using VAV/BPFS due to additional filtration rate. Otherwise, the VAV/BPFS decreased outdoor supply air rate above 25 percent relative to the rate of VAV system. Third, total energy consumption by the VAV/BPFS was lower than that of the VAV system during the period with indoor thermal load, occupied time. The energy saving of the VAV/BPFS ranged from 11 to 16 percent. The VAV/BPFS improves indoor air quality more efficiently than the VAV system, and it reduced energy consumption. Retrofitting the VAV system with the VAV/BPFS was easy The use of VAV/BPFS is, therefore, recommended far buildings with VAV system as well as for buildings at designing stage.

Gaussian Mixture Model Based Smoke Detection Algorithm Robust to Lights Variations (Gaussian 혼합모델 기반 조명 변화에 강건한 연기검출 알고리즘)

  • Park, Jang-Sik;Song, Jong-Kwan;Yoon, Byung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.733-739
    • /
    • 2012
  • In this paper, a smoke detection algorithm robust to brightness and color variations depending on time and weather is proposed. The proposed smoke detection algorithm specifies the candidate region using difference images of input and background images, determines smoke by comparing feature coefficients of Gaussian mixture model of difference images. Thresholds for specifying candidate region is divided by four levels according to average brightness and chrominance of input images. Clusters of Gaussian mixture models of difference images are aligned according to average brightness. Smoke is determined by comparing distance of Gaussian mixture model parameters. The proposed algorithm is implemented by media dedicated DSP. As results of experiments, it is shown that the proposed algorithm is effective to detect smoke with camera installed outdoor.