• 제목/요약/키워드: Out-of-Plan Deformation

검색결과 13건 처리시간 0.03초

케이슨 하부의 마찰저항 부족에 따른 케이슨 안벽 변위발생 사례연구 (A Case Study for Deformation of Caisson caused by Friction Shortage)

  • 심동현;박준호;이경숙
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.325-336
    • /
    • 2008
  • Deformation of caisson occurred during the backfilling behind the caisson and some caisson moved toward seaside. A series of site investigation were conducted to figure out various circumstances at site and also used to analyze the cause of deformation. The soil condition of backfilling is also investigated because dredged material was used as a backfill material. The friction angle of backfill is supposed to be lower than the estimated one which was used in design stage. To determine the cause of friction shortage, back analysis for sliding safety were carried out with considering the soil condition of backfilling. A remedial plan, re-rising and relocating a caisson with backfilling good earth after treatment of caisson rubble mound to achieve the safety for sliding was proposed as a best solution based on the back analysis results. Reform concrete structure including service gallery and crane rail was also considered with the remedial work to improve the cape line of caisson.

  • PDF

사출성형해석을 통한 자동차 레버쉬프트의 사출공정에 관한 연구 (Study of Injection Molding Process of Shift Lever Using Injection Molding Analysis)

  • 박철우;이부윤;이상민
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.7-13
    • /
    • 2015
  • The production processes were reviewed through the injection analysis of the shift lever as a core component of an auto lever installed in the automatic transmission of cars. The injection analysis was carried out for the shift lever and rod among the components in a shift lever module. The shift lever and rod are designed for injection molding with the insertion of a tube, a pin cable plate, and a steel rod for securing the strength of the product. The charging time, failure of injection molding, weld line, air trap, and deformation were reviewed according to this insert. Analyses on various gate positions were carried out for reviewing the cultivation and deformation of fiber around major components, such as the generation section of manipulation feeling and assembly section, so that optimal gate conditions might be reviewed and reflected in the mold design. Finally, we plan to compare the analysis results with the production of trial products.

비대칭 초고층건물의 비탄성거동에 관한 연구 (A Study on Inelastic Behavior of an Asymmetric Tall Building)

  • 윤태호;김진구;정명채
    • 한국지진공학회논문집
    • /
    • 제1권3호
    • /
    • pp.37-44
    • /
    • 1997
  • 본 논문에서는 지진하중을 받는 고층건물의 비탄성거동 특히, 층수에 따라 평면이 비대칭적으로 감소하여 발생하는 비틀림거동에 대하여 고찰하였다. 평면의 구조적 비대칭성에 의하여 발생하는 강성의 비대칭은 건물이 지진하중을 받을 때 횡변위 뿐만아니라 비틀림변형을 유발하게 된다. 이러한 비탄성 비틀림거동의 해석은 2차원모델로는 어려우므로 3차원해석이 요구된다. 본 논문에서는 102층의 비정형 초고층건물을 모델로 하여 내진설계규준에 의한 지진하중을 각 층에 가하여 하중의 크기를 증가시켜 정적 탄소성해석을 수행하였는데 비틀림에 의한 영향을 평가하기 위하여 비틀림을 제한한 모델과 그 거동을 비교분석하였다. 해석 결과에 따르면 비대칭건물의 탄소성 거동은 비틀림거동에 의하여 매우 큰 영향을 받는 것으로 나타났다.

  • PDF

점성감쇠기를 이용한 비대칭.비탄성구조물의 내진보강 (Seismic Retrofit of Asymmetric.Elasto-Plastic Structure Using Viscous Dampers)

  • 김진구;방성혁
    • 한국지진공학회논문집
    • /
    • 제6권3호
    • /
    • pp.87-93
    • /
    • 2002
  • 본 연구에서는 평면 비대칭건물의 비탄성 변위를 주어진 목표까지 제한하기 위하여 필요한 추가적인 감쇠량을 구하는 방법에 관하여 연구하였다. 이를 위하여 먼저 비대칭구조물의 항복 후 거동을 분석하고 구조물에 발생하는 연성도 요구량을 이용하여 필요한 등가 감쇠비를 유도하였다. 이러한 방법을 지진하중을 받는 5층 비대칭구조물에 적용하였다. 시간이력해석 결과와의 비교에 따르면 제안된 방법에 따라 점성감쇠기를 설치한 경우 주어진 지진하중에 대하여 약변 및 강변 모두 만족할만한 거동을 보이는 것으로 나타났다.

연약암반에서 암반의 특성을 고려한 광산갱도의 최적 설계 (Optimized Design of Mine Span Considering the Characteristics of Rockmass in Soft Ground)

  • 장명환;하태욱;정희선
    • 터널과지하공간
    • /
    • 제28권2호
    • /
    • pp.125-141
    • /
    • 2018
  • 장기적 광산 개발계획을 위하여 광산의 갱도설계는 장비계획, 운반계획, 운영계획 등의 기본이 되므로 매우 중요하다. ${\bigcirc}{\bigcirc}$광산은 생산성 향상에 중점을 둔 갱도설계가 이루어짐으로써 채광계획 변경이 매우 어렵고, 굴착갱도를 유지하기 위한 많은 노력이 필요하였다. 본 연구에서는 암반의 역학적 특성을 고려한 최적갱도를 설계하고 지보계획을 수립하고자 하였다. 이를 위하여 암반의 역학적 변수(팽윤압력, 변형계수, 지압계수)들에 대한 추정, 다양한 현장조사와 분석 등을 수행하였다. 그 결과 roof bolt 등을 활용하여 갱도유지를 하려면 갱도단면 축소 등을 고려할 필요가 있었으며, 현 갱도규격을 유지하기 위해서는 지보재와 지보방법에 대한 다양한 기능적 기술들이 필요할 것으로 분석되었다.

지하굴착에 따른 붕괴유형에 대한 고찰 (Consideration of Failure Type on the Ground Excavation)

  • 이중재;정경식;이창노
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF

Development of Computer Aided 3D Model From Computed Tomography Images and its Finite Element Analysis for Lumbar Interbody Fusion with Instrumentation

  • Deoghare, Ashish;Padole, Pramod
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.121-128
    • /
    • 2010
  • The purpose of this study is to clarify the mechanical behavior of human lumbar vertebrae (L3/L4) with and without fusion bone under physiological axial compression. The author has developed the program code to build the patient specific three-dimensional geometric model from the computed tomography (CT) images. The developed three-dimensional model provides the necessary information to the physicians and surgeons to visually interact with the model and if needed, plan the way of surgery in advance. The processed data of the model is versatile and compatible with the commercial computer aided design (CAD), finite element analysis (FEA) software and rapid prototyping technology. The actual physical model is manufactured using rapid prototyping technique to confirm the executable competence of the processed data from the developed program code. The patient specific model of L3/L4 vertebrae is analyzed under compressive loading condition by the FEA approach. By varying the spacer position and fusion bone with and without pedicle instrumentation, simulations were carried out to find the increasing axial stiffness so as to ensure the success of fusion technique. The finding was helpful in positioning the fusion bone graft and to predict the mechanical stress and deformation of body organ indicating the critical section.

와이어 펄스전해가공에서 반응표면분석법을 응용한 미세박판의 홀 가공 최적 조건에 관한 연구 (A Study on the Optimal Conditions of Hole Machining of Microplate by Application of Response Surface Methodology in Wire-Pulse Electrochemical Machining)

  • 송우재;이은상
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.141-149
    • /
    • 2017
  • Due to the inaccuracy of micro-machining, various special processing methods have been investigated recently. Among them, pulse electrochemical machining is a promising machining method with the advantage of no residual stress and thermal deformation. Because the cross section of the wire electrode used in this study is circular, wire-pulse electrochemical machining is suitable for micro-hole machining. By applying the response surface methodology, the experimental plan was made of three factors and three levels: machining time, duty factor, and voltage. The regression equation was obtained through experiments. Then, by referring to the main effect diagram, we fixed the duty factor and machining time with little relevance, and solved the equation for the target 900 microns to obtain the voltage value. The results obtained from the response surface methodology were approximately those of the target value when the actual experiment was carried out. Therefore, it is concluded that the optimal conditions for hole processing can be obtained by the response surface methodology.

변위계수법 및 약산식 내진성능평가에 기초한 비보강 조적조 건물의 내진보강 요구강도 산정 (Strength Demand Calculation for Retrofitting Unreinforced Masonry Buildings Based on the Displacement Coefficient Method and the Preliminary Seismic Evaluation Procedure)

  • 설윤정;박지훈;곽병훈;김대호
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.31-38
    • /
    • 2022
  • Based on the nonlinear static analysis and the approximate seismic evaluation method adopted in "Guidelines for seismic performance evaluation for existing buildings, two methods to calculate strength demand for retrofitting individual structural walls in unreinforced masonry buildings are proposed." The displacement coefficient method to determine displacement demand from nonlinear static analysis results is used for the inverse calculation of overall strength demand required to reduce the displacement demand to a target value meeting the performance objective of the unreinforced masonry building to retrofit. A preliminary seismic evaluation method to screen out vulnerable buildings, of which detailed evaluation is necessary, is utilized to calculate overall strength demand without structural analysis based on the difference between the seismic demand and capacity. A system modification factor is introduced to the preliminary seismic evaluation method to reduce the strength demand considering inelastic deformation. The overall strength demand is distributed to the structural walls to retrofit based on the wall stiffness, including the remaining walls or otherwise. Four detached residential houses are modeled and analyzed using the nonlinear static and preliminary evaluation procedures to examine the proposed method.