DOI QR코드

DOI QR Code

Optimized Design of Mine Span Considering the Characteristics of Rockmass in Soft Ground

연약암반에서 암반의 특성을 고려한 광산갱도의 최적 설계

  • Jang, Myoung Hwan (Mining & Geotechnical Team, Korea Resources Corporation) ;
  • Ha, Taewook (Mining & Geotechnical Team, Korea Resources Corporation) ;
  • Jeong, Hee Sun (Mining & Geotechnical Team, Korea Resources Corporation)
  • 장명환 (한국광물자원공사 자원개발기술팀) ;
  • 하태욱 (한국광물자원공사 자원개발기술팀) ;
  • 정희선 (한국광물자원공사 자원개발기술팀)
  • Received : 2018.01.22
  • Accepted : 2018.02.19
  • Published : 2018.04.30

Abstract

For a long-term mine development plan, the determination and design of mine tunnel size are very important because it is the basis of plans for equipment, transportation and operation. The ${\bigcirc}{\bigcirc}$ mine has had a difficulty in changing the mining plan due to the design of the tunnels with an emphasis on productivity improvement, and much effort was needed to maintain the mine tunnel. In this study, we designed the mine tunnel with optimized tunnel span considering the mechanical properties of rockmass and established the support plan. To do this, the estimation of the mechanical parameters(Swelling pressure, deformation coefficient and earth coefficient), field investigations and various analyses were carried out. As a result, it was necessary to consider the downsizing of the tunnel section in order to maintain the tunnel stability and dimension by using the roof bolt and analyzed that various functional constructions of the support material and method would be required to maintain the current tunnel size.

장기적 광산 개발계획을 위하여 광산의 갱도설계는 장비계획, 운반계획, 운영계획 등의 기본이 되므로 매우 중요하다. ${\bigcirc}{\bigcirc}$광산은 생산성 향상에 중점을 둔 갱도설계가 이루어짐으로써 채광계획 변경이 매우 어렵고, 굴착갱도를 유지하기 위한 많은 노력이 필요하였다. 본 연구에서는 암반의 역학적 특성을 고려한 최적갱도를 설계하고 지보계획을 수립하고자 하였다. 이를 위하여 암반의 역학적 변수(팽윤압력, 변형계수, 지압계수)들에 대한 추정, 다양한 현장조사와 분석 등을 수행하였다. 그 결과 roof bolt 등을 활용하여 갱도유지를 하려면 갱도단면 축소 등을 고려할 필요가 있었으며, 현 갱도규격을 유지하기 위해서는 지보재와 지보방법에 대한 다양한 기능적 기술들이 필요할 것으로 분석되었다.

Keywords

References

  1. Klein, S., 2001, An Approach to the classification of weak rock for tunnel projects, 2001 RETC proceedings, 793-805.
  2. Marinos, P.G., Marinos, V., Hoek, E., 2005, The geological strength index(GSI): A characterization tool for assessing engineering properties for rock masses, 87-94.
  3. Serafim, J. L. and J. P. Pereira, 1983, "Considerations on the geomechanical classification of Bieniawski", in Proc. Symp. on Engineering Geology and Underground Openings, Lisboa, 1133-1144.
  4. Bieniawski, Z. T., 1978, Determining rock mass deformability: Experience from case histories, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 237-247. https://doi.org/10.1016/0148-9062(78)90956-7
  5. Hoek, E., 2004, Estimates of rock mass strength and deformation modulus, Discussion paper#4, 6p.
  6. Sheory, P.R., 1994, A theory for in situ stresses in isotropic and transversely isotropic rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.31(1), 23-34. https://doi.org/10.1016/0148-9062(94)92312-4
  7. Barton, N.R., Lien, R. and Lunde, J., 1974, Engineering classification of rock masses for the design of tunnel support, Rock Mech. 6(4), 189-232. https://doi.org/10.1007/BF01239496
  8. Ouchi, A., Pakalnis, R., Brady, T., 2009, Weak rock mass span design-best practices, proceeding of the 3rd CANUS Rock Mechanics Symposium, Toronto.
  9. Unal, E., 1992, Rock reinforcement design and its application in mining, Proc. International Symposium on Rock Support, Sudbury, Ontario, Canada, 541-546.
  10. Martin, C.D., Tannant, D.D., Yazici, S., Kaiser, P.K., 1999, Stress path and istability around mine openings, 9th ISRM Congress, 25-28.
  11. Hoek, E. and Brown, E.T., 1994, Strength of rock and rock masses, ISRM News Journal, 2(2), 4-16.