• Title/Summary/Keyword: Out-of -plane error

Search Result 66, Processing Time 0.024 seconds

Accuracy and Economic Evaluation for Utilization of National/Public Land Actual Condition Survey Using UAV Images (국공유지 실태조사 활용을 위한 UAV 영상의 정확도 및 경제성 평가)

  • Lee, Sang Chan;Kim, Jun Hyun;Um, Jung Sup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.175-186
    • /
    • 2017
  • In this study was to survey method of national/public land actual condition survey to utilization of UAV, in order to evaluate the economic and accuracy. we carried out the comparative evaluation of the cadastral status surveying in terms of accuracy of parcel checkpoint, economical costs. The results are summarized as follows. First, average position error of the orthoimage was 0.033m in X error, 0.023m in Y error when the RMSE average calculated 0.046m from the intersection of plane distance connections. Secondly, it was appeared the accuracy of the orthophotograph is 0.076m at the maximum RMSE of the UAV orthoimage check point and 0.042m at the minimum RMSE compared with the VRS-GNSS survey results. Thirdly, when the allowable error specified in the implementing regulation of the current cadastral survey is applied, all of the checkpoint of 0.360m tolerance corresponding to the scale of 1/1,200 is satisfied. Finally, UAV utilization method in national/public land actual condition survey is 26,497,436(KRW) cheaper than cadastral survey method for In the economic evaluation of national/public land actual condition survey. Therefore, as a result of this study shows that the method of utilizing UAV in the national/public land actual condition survey satisfies legal standards in terms of accuracy and economical aspect is a way to further reduce the local government budget.

Empirical Model of Via-Hole Structures in High-Count Multi-Layered Printed Circuit Board (HCML 배선기판에서 비아홀 구조에 대한 경험적 모델)

  • Kim, Young-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.55-67
    • /
    • 2010
  • The electrical properties of a back drilled via-hole (BDH) without the open-stub and the plated through via-hole (PTH) with the open-stub, which is called the conventional structure, in a high-count multi~layered (HCML) printed circuit board (PCB) were investigated for a high-speed digital system, and a selected inner layer to transmit a high-speed signal was farthest away from the side to mount the component. Within 10 GHz of the broadband frequency, a design of experiment (DOE) methodology was carried out with three cause factors of each via-hole structure, which were the distance between the via-holes, the dimensions of drilling pad and the anti-pad in the ground plane, and then the relation between cause and result factors which were the maximum return loss, the half-power frequency, and the minimum insertion loss was analyzed. Subsequently, the empirical formulae resulting in a macro model were extracted and compared with the experiment results. Even, out of the cause range, the calculated results obtained from the macro model can be also matched with the measured results within 5 % of the error.

Initial Study of a Wire Mesh Tomography Sensor for Liquid/Gas Component Investigation

  • Rahiman, M.H.F.;Siow, L.T.;Rahim, R.A.;Zakaria, Z.;Ang, Vernoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2205-2210
    • /
    • 2015
  • Experimental studies have been carried out to study the principle operation of the conductive type wire-mesh tomography sensor and analyse the wire-mesh tomography sensor for the liquid/gas two-phase flow interface and void fraction distribution in a process column. The measurement of the two-phase flows in the process column is based on the cross-sectional local instantaneous conductivity. The sensor consists of two planes of parallel electrode wires with 16 electrodes each and was placed orthogonally with each plane. The sensor electrode wires were made of tinned copper wire with an outer diameter of 0.91 mm which stretched over the sensor fixture. Therefore, this result in the mesh grid size with 5.53×5.53mm2. The wire-mesh sensor was tested in a horizontal liquid/gas two-phase flows process column with nominal diameter of 95.6 mm and the sampling frequency of 5882.3529 Hz. The tomogram results show that the wire-mesh tomography provides significant results to represent the void fraction distribution in the process column and estimation error was found in the liquid/gas interface level

Analysis of Mechanical Loads During Yawing (풍력터빈 요 운동에 대한 기계적 하중 해석)

  • Nam, Yoon-Su;Choi, Han-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • The yaw control, a major part of the wind turbine, is closely related to the efficiency of electric power production and the mechanical load. The yaw error, which results from the nacelle not being appropriately aligned in the wind direction, not only decreases the power output but also reduces the lifetime of the wind turbine as a result of large fatigue loads. However, the yawing rate cannot be increased indefinitely because of constraints on mechanical loads. This paper investigates the characteristics of an active yaw control system, the basic principle of the system, and mechanical loads around the yaw axis during yawing.

Briefs Pattern Making for Women in their 20's using 3D Parametric Human Body Model (3차원 파라메트릭 모델을 활용한 20대 성인 여성용 브리프 패턴 설계)

  • Choi, Sin-Ae;Park, Soon-Jee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.5
    • /
    • pp.642-649
    • /
    • 2010
  • This study was designed to generate briefs pattern for women in their twenties using 3D parametric body model. 151 women in their 20's were random sampled and measured using Martine's anthropometry. And one subject was chosen as the representative subject for 3D scanning. Parametric model was generated of using CATIA P3, Unigraphics NX4.0, Rapidform 2006. And the 3D surface of parametric body model was flattened onto the 2D plane. 3 downscale ratios(0%, 10%, 15%) were applied to generated pattern to figure out what downscale ratio was suitable to make briefs with stretch fabric. 4 kinds of experimental briefs were made with stretch fabrics(0%, 10%, 15% downscale) and worn on the dressform. Subjective evaluation on the appearance was done and the data was analyzed by ANOVA with post-hoc test. Briefs pattern was generated through the process of flattening the parametric surface and arranging the patches to make briefs pattern by dart manipulation. The different ration of outline and area between 3D surface and 2D pattern were 0.22% and 0.09% respectively. It showed that a parametric model could provide a desirable pattern with minute size error. The results of subjective evaluation on the appearance of 4 experimental briefs showed that stretch briefs with 15% downscale ratio was evaluated most highly in most items. Findings imply that it is feasible to apply 3D parametric model to generate patterns for various items considering various fabric properties.

AC Breakdown Voltage Simulation of SF6/N2 Mixture in Non-Uniform Field and Its Comparison with Experimental Values (불평등 전계에서 SF6/N2 혼합가스의 AC 절연파괴전압 시뮬레이션 및 실험값와의 비교)

  • Lee, Byung-Taek;Hwang, Cheong-Ho;Lee, Tae-Ho;Huh, Chang-Su;Chang, Yong-Moo;Lee, Ki-Taek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1416-1422
    • /
    • 2010
  • $SF_6$ is the most commonly used insulating gas in electrical systems. But In these days $SF_6$ mixtures and alternative gas has been studied because of global warming. so although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/N_2$ mixtures. At present study the breakdown characteristics of $SF_6/N_2$ mixtures in Non-uniform field was performed. In this paper, The simulation value are compared with experiment values. Streamer breakdown criterion was used for predicting breakdown voltage. For accurate simulation this simulation apply utilization factor using CST(computer simulation technology) EM $studio^{tm}$ program. AC breakdown experiments in non-uniform field was performed to compare with the breakdown simulation values. The pressure range of gas mixtures was 0.4 MPa to 0.7 MPa. The rod-plane was used and mixture ratio is $SF_6$ 20% : $N_2$ 80%. The gap lengths are 10mm to 70mm. As the pressure increase, this simulation value does not correspond to the experiment value. So this simulation need surface roughness factor. As a result of applying surface roughness factor this simulation decrease a relative error (|experiment value - simulation value| /simulation value).

Automated Finite Element Mesh Generation for Integrated Structural Systems (통합 구조 시스템의 유한요소망 형성의 자동화)

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems' essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.

The Parameter Identification of Tidal Model on The Boundary-Fitted Coordinates (Boundary-Fitted 좌표계로 변환한 2차원조석모형의 매개변수 동정)

  • 김경수;이재형
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.319-328
    • /
    • 1990
  • The Parameter Identification of 2-demensional estuarine model was carried out using new output ADI-FDM numerical semi-implicit schem transformed in boundary fitted(BF) - coordinate. The hydrodynamic equations which is coupled with the transport equations were used as basic equations in the model. Thompson's equations were used to transform governing equations into rectangular plane equations and his elliptic grid generation scheme was used to generate curvilinear grid system. in BF - coordinates. The parameters to be identified are friction coefficient and disperse coefficient embedded in the governing equations. The numerical output scheme is tidally averaged salinity model in BF - coordinates. The algorithm to optimize norm of error between observations and calculations is the influence coefficinet algorithm associated with least square criterion. The lumped model is conssidered in identification. This paper was concetrated on checking whether the new output scheme might be useful to identify parameters in estuarine salinity model or not. The proposed method was tested through experimental application with hypothetical simple model. The result of the test shows that the proposed method can be used for parameter identification in estuarine model.

  • PDF

Evaluation of Uncertainty of IMRT QA Using 2Dimensional Array Detector for Head & Neck Patients (두경부암에서 2차원 배열 검출기를 이용한 IMRT QA의 불확실성에 대한 연구)

  • Ban, Tae-Joon;Lee, Woo-Suk;Kim, Dae-Sup;Baek, Geum-Mun;Kwak, Jung-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Purpose: IMRT QA using 2Dimensional array detector is carried out with condition for discrete dose distribution clinically. And it can affect uncertainty of evaluation using gamma method. We analyze gamma index variation according to grid size and suggest validate range of grid size for IMRT QA in Hospital. Materials and Methods: We performed QA using OniPro I'mRT system software version 1.7b on 10 patients (head and neck) for IMRT. The reference dose plane (grid size, 0.1 cm; location, [0, 0, 0]) from RTP was compared with the dose plane that has different grid size (0.1 cm, 0.5 cm, 1.0 cm, 2.0 cm, 4.0 cm) and different location (along Y-axis 0 cm, 0.2 cm, 0.5 cm, 1.0 cm). The gamma index variation was evaluated by observing the level of changes in Gamma pass rate, Average signal, Standard deviation for each case. Results: The average signal for each grid size showed difference levels of 0%, -0.19%, -0.04%, -0.46%, -8.32% and the standard deviation for each grid size showed difference levels of 0%, -0.30%, 1.24%, -0.70%, -7.99%. The gamma pass rate for each grid size showed difference levels of 0%, 0.27%, -1.43%, 5.32%, 5.60%. The gamma evaluation results according to distance in grid size range of 0.1 cm to 1.0 cm showed good agreement with reference condition (grid size 0.1 cm) within 1.5% and over 5% in case of the grid size was greater than 2.0 cm. Conclusion: We recognize that the grid size of gamma evaluation can make errors of IMRT QA. So we have to consider uncertainty of gamma evaluation according to the grid size and apply smaller than 2 cm grid size to reduce error and increase accuracy clinically.

  • PDF

Dynamic analysis of a cage affected by the current (조류의 영향을 바든 가두리의 거동해석)

  • Lee, Mi-Kyung;Lee, Chun-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.214-224
    • /
    • 2004
  • A large cage system for the purpose of fishes farming in the open sea was influenced by various forces from the ocean environment. The deformation of the cage by these forces affects the safety of the cage itself, as well as that of the cultivated creatures. In this research, theoretical model was established to analyzing dynamic movement influenced by current for cage. Also, to increase the accuracy of calculations, the reduction ratio of flow speed acquired using the flume tank experiment. Applying the reduction ratio of flow speed to the numerical calculation, the calculation values were compared with the measured values in the flume tank experiment using cage model. The results were as follows ; 1. When the flow speed of the flume tank is fixed, the decrease of the velocity of flow which is passed the upper panel side is proportion to the increase of porosity ratio of netting. 2. When the porosity ratio is fixed, the increase of the velocity of flow which is passed the upper panel side is proportion to the increase of velocity of flow. 3. When the porosity ratio and the flow speed of the flume tank are fixed, the decrease of the velocity of flow which is passed the upper panel side is proportion to the increase of attack angle. 4. As a result of comparison between the underwater shape by simulation which is applying the reduction ratio of flow speed from the experiment using plane netting and that by model experiment, it was found out that the result of the simulation was very close to that of model gear within ${\pm}$ 5 % error range.