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1. Integrated Structural Systems

Structural analysis module is an essential part of any integrated 

structural system. Diverse integrated systems of today require from the 

analysis module, efficient real time responses to real time input such as 

earthquake signals, extreme weather related forces, and man-made 

accidents. An integrated system may also be for the entire life span of 

a civil structure conceived during the initial conception, developed 

throughout various design stages, effectively used in construction, and 

utilized during usage and maintenance. All these integrated systems’ 

essential part is the structural analysis module and the module must be 

automated and computationally efficient so that the responses may be 

almost immediate in terms of real time. The most widely used method 

of structural analysis is the finite element method and for automation 

of the method, many effective finite element meshes must be 

automatically generated for a given analysis.

2. Automated Finite Element Structural 

Analysis Algorithm

The finite element method with many variations is used diversely in 

applications of computational mechanics and structural analysis; and 

today’s modern integrated structural engineering system needs a 
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The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the 

analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and 
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reliable, robust and automated finite element analysis module as an 

essential component [1-4]. Complicated nonlinear and earthquake 

related structural analysis requires several finite element analyses of 

the same structural model. If the same mesh is used throughout the 

analysis, inefficiency in computation results because fine meshes are 

adopted where they are not needed and inaccuracy due to severely 

distorted elements formed during the analysis that may be processed 

undetected as only the starting and the finally deformed element 

shapes are checked in general practice. Thus, finite element meshes for 

complex and iterative analyses must be modified and generated many 

times as the analysis proceeds since the accuracy of results and 

computational efficiency depend on the meshes and the type of 

elements; generally in practice, an overly fine mesh for the entire 

domain is adopted but this is a poor scheme because of computational 

inefficiency caused by too many elements and inaccuracy caused by 

extremely distorted elements that are not detected [1, 5].

The procedure for automated generation of mesh algorithm based 

on the r-h refinement using adaptive schemes is as follows: (1) start 

with a good initial mesh based on previous mesh, database, or an expert 

system to identify general areas that need relatively finer mesh; (2) 

compute error for elements; (3) refine meshes shifting from the r 

method and the h method; and (4) repeat until preset tolerance is 

reached. The scheme uses computationally simple error estimation 

based on strain deviations. The r-h refinement optimally combines the 

r method which moves an existing node and the h method which 

divides an element into many smaller elements of same shape using a 

dispersion parameter. The procedure has a check for distortion limit for 

each element using shape factor that is computed easily for a particular 

element and shape [6-8].

2.1 Strain Deviations as Error Estimates

Gauss point strain deviations are readily available as the strains at 

Gauss points have to be computed for numerical integration when 

forming the element stiffnesses; these values used as error estimates 

are computationally efficient estimates for mesh refinement purposes. 

For planar problems using quadrilateral elements, element i`th strain 

deviations may be expressed as :
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Here,   is the norm of the k directional (x, y and xy for planar 

problems where xy is the shear component) standard deviation of the 

strain,   is Gauss points in k direction,   is the k direction strain of 

Gauss point j,   is the k directional strain, and   is the norm of the 

representative strain of element i which is used as error for the element, 

  is the area of element i, and   is the total area. The error of element 

i is normalized with respect to the total area and the relative order of 

errors for all elements are calculated to identify elements to be changed 

adaptively. Past studies have shown that similar procedures are 

computationally efficient [6, 9].

2.2 The r-h Method of Mesh Refinement and Shape 

Factors

Mesh generation with strain deviations as relative error for elements 

is formulated by alternating the r method and the h method of mesh 

refinement. The r method moves node at coordinates (x,y) to a new 

adapted coordinates 
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Here,  ,   are the x, y coordinates of the center of element i, and na 

is the number of elements sharing the node. For boundary nodes, Eqs. 

(5) and (6) should yield x, y coordinates of the closest point on the 

boundary. Distortion of an element shape violating the tolerable limit 

is checked by the shape factor for the element. Shape factor of a 

quadrilateral element i with boundary length Li is defined as :
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The above factor’s maximum value is 1 which is for a square. Shape 

factors for distorted quadrilateral becoming triangular are less than 

0.8285(shape factor value for a right equilateral triangle). A reliable 

shape of a quadrilateral element has approximately equal side lengths 

and angles; the factors for these are close to 1. Meshes with all the 

shape factors near 1 throughout the analysis produce reliable results. 

Shape factors between 0.9 and 1.0 are appropriate but the r method 

should restrict node movements with a limitation on the shape factor to 

be above 0.95.

The h method subdivides a shape into smaller similar shapes. The 

elements to be selected are based on the discretization parameter d 

defined as:

 
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Here,   is constant value to be set,     is the mean value of 

strain, and 


 is the maximum value of the applied load or the inertia 

force. A parametric investigation suggests a value between 14.0 and 

15.0 for   when analyzing dynamics or earthquake engineering 

analysis problems. Departure form this range for   causes com-

putational inefficiency for no increase in accuracy [8].

The power of the r-h method comes from effective combining 

strategies of the r method and the h method. Many means of 

combination strategies have been studied [8, 9]. An optimal 

combination scheme of the r-method and the h-method is obtained by 

using dispersion parameter D defined as the difference between the 

mean of the normalized strains and the mode of the distribution of 

normalized strains:
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Value of D determines alteration ratio of the r method and the h 

method. A value around 19 sets the ratio of the r-method and the 

h-method to be about 3; a higher value reduces this ratio, and a lower 

value increases the ratio. The h method is much more efficient in 

reducing overall error as the element sizes are proportionately reduced 

and the number of element increases in single iteration from 1 element 

to 4, 16, or higher. However, the r method is needed to create new 

shapes and to sort out overly distorted elements. The preset tolerance, 

typically around 0.005%, ends mesh refinement; the tolerance is the 

change in the sum of the strain values.

3. A Standard Dynamic Analysis Problem

A cantilever beam loaded at the free end is analyzed using the finite 

element method in the time domain using the automated algorithm 

outlined in Section 2.

3.1 Time Domain Analysis

The iteration formulas for direct numerical integration in the time 

domain for a typical dynamic analysis based on the Newmark- 

method are [10]: 
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Here,   ,   , and    are the ith step displacement, velocity, and 

acceleration vectors and    ,     , and      are the i+1th step 

corresponding quantities;   is the time step size;  and  are 

parameters where for efficient convergence, 1/4 and 1/2 values are 

recommend.

In matrix form, equilibrium equations for the i+1th step becomes:
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Here, ,  are the stiffness and Mass matrices, and     is i+1’th time 

step force vector.

3.2 Response of a Cantilever Beam with Loading at the 

Free End

Fig. 1 shows the dimension of the analyzed cantilever beam and the 

loading function P(t). The beam is a 100 cm deep rectangular section; 

Young's modulus E is 212×105 N/cm2; Poisson's ratio v is 0.33, and the 

unit mass is 7.86×10-3 kg/cm3. In the analysis, plane stress four node 

quadrilateral bilinear element is used. The loading P(t) is a sinusoidal 

load given by sin between t = 0 and 1 seconds.

The time step  selected for the analysis is 0.0025 seconds, 

yielding 2000 steps for 5 seconds. Meshes are generated with 

dispersion parameter D = 19, discretization parameter d = 14, and limit 
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on shape factor Si set to 0.98. The initial mesh is obtained from an 

expert system. The terminating iteration tolerance is set to 0.005%. A 

new mesh is generated after four time steps, i.e., at every 0.0100 

seconds. Table 1 shows progression of sample strain deviation values 

in the initial steps of the dynamic adaptive mesh generation where the 

altercation of the r method and the h method are depicted. The adaptive 

mesh procedure satisfies the iteration tolerance limit after about nine 

steps.

Fig. 2 shows a series of meshes automatically generated; Fig. 2(a) 

shows the initial mesh generated from an expert system, Fig. 2(b) 

shows the automatically generated mesh at t = 0.24 which is the time 

where the deflection is the maximum during forced vibration, and Fig. 

2(c) shows the generated mesh at t = 4.70 which is the time where the 

deflection is the maximum during the free vibration. The generated 

meshes show the dependence of the mesh refinement on the loading 

(see Fig. 2(b)), deflection(see Fig. 2(c)), and highly stressed areas 

(fixed end part). The meshes also show the elimination of highly 

distorted elements.

In common practice, a fine regular mesh is used throughout the 

analysis; a regular mesh of identical square shapes totaling 1600 

elements are used to simulate this and the solution from this is the 

general solutions. For more accurate engineering solution without an 

adaptive scheme, a finer regular mesh with 6400 identical elements are 

generated by dividing each element used in the general solution into 

four identical square elements. The obtained solution using this refined 

mesh is the engineering solution. The solution from the automated 

adaptive meshes is the strategy solution where the number of elements 

are between 560 and 826. A 64 bit Personal Computer with Intel Core 

17-6700 CPU, 32.0 GB RAM, and Windows 10Pro is used to run the 

analyses. Vertical displacement of the free end and normal stresses at 

the fixed end comparisons among the engineering, the general, and the 

strategy solutions are shown in Fig. 3. Close agreements among the 

three solutions are shown in the figure; however, numeric data depict 

that if the engineering solutions are assume to have no error, errors 

from the general solutions are much bigger than the errors from the 

strategy solutions. Table 2 shows the comparative computation times 

and errors. The total error is defined as the square root of the sum of 

errors at the selected points. The engineering solutions are assumed 

exact, i.e., no error. The data on the table show that with the auto-

mation, errors have been reduced remarkably (3.592% to 0.321% for 

total displacement and 2.822% to 0.222% for stress) with 62.96% 

decrease in real run time ; the finest mesh for the entire structure used 

in the engineering solution needed much longer real run time increase 

of 266.66%. Even as the computing power of computers is increasing 

continuously, automation still needs efficiency of computation 
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Fig. 1. Cantilever Beam and Loading P(t)

Table 1. A Progression of Strain Deviation Values

Adaptive 

Step
Method

Maximum 

Strain 

Deviation

Sum of 

Strain 

Deviation

Change in Sum of 

Strain Deviation 

from previous 

Step (%)

0 0.00001910 0.0004492 -

1-initial h 0.00000620 0.0003461 29.78

2 h 0.00000100 0.0002533 36.63

3 r 0.00000092 0.0002510 0.9196

4 r 0.00000081 0.0002502 0.3584

5-last h 0.00000021 0.0001420 43.22

Fig. 2. Automatically Generated Finite Element Meshes
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algorithms in every step of the procedure in order for the method to be 

practical and to produce realistic real time responses.

4. Conclusions

An automated finite element mesh generation for finite element 

analysis of a structures is described. The algorithm is efficient in terms 

of real time without any apparent loss of accuracy in responses. The 

procedure optimally combines well known finite element related 

concepts such as the h and r method of mesh refinement, shape factors 

for robustness of element shapes, and strain deviations for error 

estimates; the computational requirements for these concepts are 

minimal. The cantilever dynamics problem considered as an example 

shows the specifics of the procedure. The procedure may be applied to 

the analysis module in any integrated system or for any part of 

nonlinear structural analysis and general dynamic analysis of a 

structure. The procedure is adaptable for real time numerical compu-

tation responses for finite element models of large complicated 

structures subjected to real time dependent loads such as earthquakes 

and extreme weather conditions as efficient automated analyses of 

these dynamic and nonlinear problems are an essential part of today’s 

integrated systems. Addition of a powerful expert system that 

generates more effective initial mesh should improve the performance 

of automation.
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