• Title/Summary/Keyword: Orthotropic material

Search Result 286, Processing Time 0.025 seconds

The Influence of the Aspect Ratio on the Composite Material Bridge Deck Structures

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Theories for composite material structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates, the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the author. Most of the bridge deck structures on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms $M_x$ on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

The torsional buckling analysis for cylindrical shell with material non-homogeneity in thickness direction under impulsive loading

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.231-236
    • /
    • 2005
  • This study considers the buckling of orthotropic cylindrical thin shells with material nonhomogeneity in the thickness direction, under torsion, which is a power function of time. The dynamic stability and compatibility equations are obtained first. Applying Galerkin's method then applying Ritz type variational method to these equations and taking the large values of loading parameters into consideration, analytic solutions are obtained for critical parameter values. Using those results, the effects of the periodic and power variations of Young's moduli and density, ratio of Young's moduli variations, loading parameters variations and the power of time in the torsional load expression variations are studied via pertinent computations. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space

  • Kakar, Rajneesh;Kakar, Shikha
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-36
    • /
    • 2014
  • The effect of various parameters on the propagation of surface waves in electro-magneto thermoelastic orthotropic granular non-homogeneous medium subjected to gravity and initial compression has been studied. All material coefficients are obeyed the same exponent-law dependence on the depth of the granular elastic half space. Some special cases investigated by earlier researchers have also been deduced. Dispersion curves are computed numerically and presented graphically.

Thermal stresses in a non-homogeneous orthotropic infinite cylinder

  • Edfawy, E.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.841-852
    • /
    • 2016
  • The present paper is concerned with the investigation of propagation of thermoelastic media, the finite difference technique is used to obtain the solution for the uncoupled dynamic thermoelastic stress problem in a non-homogeneous orthrotropc thick cylindrical shell. In implementing the method, the linear dynamic thermoelasticity equations are used with the appropriate boundary and initial conditions. Thermal shock stress becomes of significant magnitude due to stress wave propagation which is initiated at the boundaries by sudden thermal loading. Numerical results have been given and illustrated graphically in each case considered. The presented results indicate that the effect of inhomogeneity is very pronounced.

Numerical modeling of an orthotropic RC slab band system using the Barcelona model

  • Kossakowski, Pawel G.;Uzarska, Izabela
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • Numerical modeling of reinforced concrete structures is a difficult engineering problem, primarily because of the material inhomogeneity. The behaviour of a concrete element with reinforcement can be analyzed using, for example, the Barcelona model, which according to the literature, is one of the most suitable models for this purpose. This article compares the experimental data obtained for an orthotropic concrete slab band system with those predicted numerically using Concrete Damage Plasticity model. Abaqus package was used to perform the calculations.

Elastic Wave Propagation in Monoclinic System Due to Harmonic Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.47-52
    • /
    • 1998
  • An analysis of dynamic responses is carried out on monoclinic anisotropic system due to a buried harmonic line source. The load is in the form of a normal stress acting along an arbitrary axis on the plane of symmetry within the orthotropic materials: In case that the line load is acting along the symmetry axis normal to the plane of symmetry, plane wave equation is coupled with verital shear wave and longitudinal wave. However, if the line load is acting along an arbitrary axis normal to the plane of symmetry, plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in a reference coordinate system, where the line load is coincident with a symmetry axis of the orthotropic material. Then the equation of motion is transformed into one with respect to general coordinate system with azimuthal angle by using transformation tensor. Plane wave solutions of monoclinic systems are derived for infinite media. Finally complete solutions for the plane harmonic wave are obtained by calculating the inverse of the integral transforms, in which bulk wave poles are avoided by deforming the contour of the integration to the complex plane. Numerical results for examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.

Analysis of Reinforced Concrete Slab Bridges by the Composite Laminates Theory (복합적층판 이론에 의한 철근콘크리트 슬래브교의 해석)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • In this paper, A reinforced concrete slab bridges is analyzed by the composite laminates theory. Both the geometry and the material of the cross section of the reinforced concrete slab bridge are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, Bij = 0, and D16 = D26 = 0. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and specially orthotropic laminates theory are used for analysis. The result of specially orthotropic laminates theory analysis is modified to obtain the solution of the beam analysis. The result of this paper can be used for reinforced concrete slab analysis by the engineers with undergraduate study in near future.

  • PDF

Analysis of Propagating Crack Along Interface of Isotropic-Orthotropic Bimaterial by Photoelastic Experiment

  • Lee, K.H.;Shukla, A.;Parameswaran, V.;Chalivendra, V.;Hawong, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.102-107
    • /
    • 2001
  • Interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic Photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static crack is greater when $\alpha=90^{\circ}C$ (fibers perpendicular to the interface) than when $\alpha=0^{\circ}C$ (fiber parallel to the interface) and those when $\alpha=90^{\circ}C$ are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating crack are greater when $\alpha=0^{\circ}C$ than $\alpha=90^{\circ}C$. The relationship between complex dynamic stress intensity factor $|K_D|$ and crack speed C is similar to that for isotropic homogeneous materials, the rate of increase of energy release rate G or $|K_D|$ with crack speed is not as drastic as that reported for homogeneous materials.

  • PDF

A Study on the Dynamic Energy Release Rate of an Orthotropic Strip with a Half Infinite Crack and Large Anistropic Ratio (이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 에너지해방률에 관한 연구)

  • Baek, Un-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1863-1870
    • /
    • 2000
  • When an impact stress is applied on the external boundary of double cantilever beam of orthotropic material which crack length is greater than specimen hight and anistropic ratio is very high, dyna mic energy release rate is derived, and the relationship between dynamic energy release rate and crack propagating velocity is studied. Dynamic energy release rate to static energy release rate is decreased with increasment of crack propagating velocity. The relationships between dynamic energy release rate and vertical strain have a similar pattern with those between static energy release rate and vertical strain. When normalized time(Cstla) is greater than or equal to 2, dynamic energy release rate approaches to a constant value.