• Title/Summary/Keyword: Orthotropic beam

Search Result 90, Processing Time 0.029 seconds

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF

A Study on the Dynamic Energy Release Rate of an Orthotropic Strip with a Half Infinite Crack and Large Anistropic Ratio (이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 에너지해방률에 관한 연구)

  • Baek, Un-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1863-1870
    • /
    • 2000
  • When an impact stress is applied on the external boundary of double cantilever beam of orthotropic material which crack length is greater than specimen hight and anistropic ratio is very high, dyna mic energy release rate is derived, and the relationship between dynamic energy release rate and crack propagating velocity is studied. Dynamic energy release rate to static energy release rate is decreased with increasment of crack propagating velocity. The relationships between dynamic energy release rate and vertical strain have a similar pattern with those between static energy release rate and vertical strain. When normalized time(Cstla) is greater than or equal to 2, dynamic energy release rate approaches to a constant value.

A Simple and Accurate Analysis of Two Dimensional Concrete Slab for a Railroad Bridge by the Composite Laminates Plate Theory (복합적층판 이론에 의한 2차원 콘크리트 슬래브 철도교량의 정확하고 간단한 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • In this paper, two dimensional concrete slabs for a railroad bridge were analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}$ = 0, and $D_{16}=D_{26}=0$ Bridge deck behaves as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis.

Dynamic Behavior of Laminated Orthotropic Cylindrical Shells (複合材 圓筒쉘의 動的 擧動 硏究)

  • 김천욱;김치균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1807-1815
    • /
    • 1992
  • The vibration characteristic of thin laminated orthotropic cylindrical shell is investigated based on the Donnell theory. The Rayleigh-Ritz variational procedure is employed. For the variety of shell end conditions, the beam characteristic function is used for the axial mode function. The result of the present analysis is in good agreement with some available analytical results and NASTRAN and BOSOR4 calculations. In the present study, the relation between natural frequencies and orthotropic parameter k is investigated. Introducing the frequency parameter, this study shows that the frequency parameter increases as the orthotropic parameter k approaches to one.

Bridge Superstructures Design by Special Othotropic Plate Theory (특별직교 이방성 판 이론에 의한 교랑 상부구조 설계)

  • Kim, Dun-Hyun;Han, Bong-Koo;Lim, Tae-Ho;Oh, Sang-Sub
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.171-174
    • /
    • 2003
  • The Special orthotropic plate theory is used for analysis of panels made of steel girders and cross-beams, and made of reinforced concrete. The cross-sections of girders and cross-beams are WF types. The result is compared with that of the beam theory. According to the numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory, The result for the concrete slab in given for the practicing engineers.

  • PDF

Orthotropic Beam Analogy for Analysis of Shear Stresses in Framed-Tube Structures (구형등가보 원리에 의한 튜브 구조물의 전단응력 해석)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.393-400
    • /
    • 2001
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.

  • PDF

Free vibration of orthotropic functionally graded beams with various end conditions

  • Lu, Chao-Feng;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.465-476
    • /
    • 2005
  • Free vibration of orthotropic functionally graded beams, whose material properties can vary arbitrarily along the thickness direction, is investigated based on the two-dimensional theory of elasticity. A hybrid state-space/differential quadrature method is employed along with an approximate laminate model, which allows us to obtain the semi-analytical solution easily. With the introduction of continuity conditions at each fictitious interface and boundary conditions at the top and bottom surfaces, the frequency equation for an inhomogeneous beam is derived. A completely exact solution of an FGM beam with material constants varying in exponential way through the thickness is also presented, which serves a benchmark to verify the present method. Numerical results are performed and discussed.

Elastic Buckling of Elastically Restrained Orthotropic Plate with a Longitudinal Stiffener under In-plane Linearly Distributed Load (면내 선형분포하중을 받으며 두 변이 탄성구속되고 수평보강된 직교이방성판의 탄성좌굴)

  • 권성미;정재호;채수하;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.17-20
    • /
    • 2001
  • This paper presents the results of an elastic buckling analysis of elastically restrained orthotropic plate with a longitudinal stiffener under in-plane linearly distributed load. It is assumed that the loaded edges of web plate are simply supported and other two edges are elastically restrained against rotation. The stiffener is modeled as a beam element and its torsional rigidity is neglected. For the buckling analysis Lagrangian multiplier method is employed. The effects of restraint and longitudinal stiffener are presented in a graphical form.

  • PDF

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.

Vibration Analysis of Thick Orthotropic Plates Using Mindlin Plate Characteristic Functions (Mindlin판 특성함수를 이용한 직교이방성 후판의 진동해석)

  • LEE JONG-MOON
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.21-26
    • /
    • 2003
  • An iteractive Kantorovich method is presented for the vibration analysis of rectangular orthotropic thick plates. Mindlin plate characteristic functions are derived in general forms using the Kantorovich method. Initially, Timoshenko beam functions consistent with the boundary conditions of the plate were used. Through numerical calculations of natural fairs of appropriate models, it has been confirmed that the method presented is superior to the Rayleigh-Ritz analysis or the finite element analysis in both accuracy and computational efficiency.