• 제목/요약/키워드: Orthotropic Material

검색결과 285건 처리시간 0.02초

리브로 보강된 GFRP 관로의 탄성 좌굴거동 특성 (Elastic Behavior Characteristics of GFRP Pipes Reinforced Ribs)

  • 한택희;서주형;염응준;강영종
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.737-746
    • /
    • 2006
  • 본 연구에서는 리브로 보강된 GFRP(Glass Fiber Reinforced Plastic) 관로의 탄성 좌굴 강도를 산정하였다. 보강된 리브의 두께, 높이, 배치 간격은 관로의 좌굴 강도에 영향을 미치는 주요 인자이다. 또한, GFRP 재료는 이방성 재료이므로, 재료의 방향별 강성 또한 관로의 좌굴강도에 영형을 미치는 인자로서 고려되어야할 부분이다. 이러한 매개변수를 적용하여, 직교 이방성 재료로 구성된 리브 보강 관로의 좌굴 강도를 유한요소 해석을 이용하여 매개변수를 수행하고, 회귀분석을 통하여 좌굴 강도 산정을 위한 간략식을 제시하였다.

균일한 면외 전단하중을 받는 직교 이방성 적층재 내부 중앙균열의 모드 III 응력세기계수 (Mode III Stress Intensity Factors for Orthotropic Layered Material with Internal Center Crack Under Uniform Anti-Plane Shear Loading)

  • 이강용;주성철;김성호
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.961-967
    • /
    • 1999
  • A model is constructed to evaluate the mode III stress intensity factor(SIF) for orthotropic three-layered material with a center crack subjected to uniform anti-plane shear loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is numerically analyzed to evaluate the effects of the ratio of shear modulus, strength of each layer and crack length to layer thickness on the stress intensity factor.

그라우팅에 의한 터널 보강효과의 해석적 연구 (A Study on the Tunnel Stability using Grouting Technique)

  • 이종우;이준석;김문겸
    • 터널과지하공간
    • /
    • 제6권4호
    • /
    • pp.298-305
    • /
    • 1996
  • Grouting technique is frequently used where a tunnel structure is passing through the shallow overburden area or where the thickness of hard rock above the tunnel is rather thin. However, engineering background on design process of the grout reinforcement does not seem to be fully understood until now. Mechanics of composite material is, therefore, introduced in this study to investigate the orthotropic material properties of the composites containing soil(or rock) and grouting material. These orthotropic material properties can be used to represent the reinfocement effects quantitatively. The model developed in this study is next applied to a typical tunnel structure and the grouting effect is analyzed numerically. The idea used in this study can be expanded to a situation where a pipe roofing or a forepoling technique is adopted and a simplified design procedure, similar to the model model introduced in this study, can be developed.

  • PDF

파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동 (Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces)

  • 홍남식;이상화
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

직교이방성판의 좌굴강도를 구하기 위한 근사식의 개발 (Approximate Solution for Finding the Buckling Strength of Orthotropic Rectangular Plates)

  • J. H. Jung;S. J. Yoon;S. K. You
    • Composites Research
    • /
    • 제16권5호
    • /
    • pp.28-38
    • /
    • 2003
  • 본 연구는 면내 선형분포하중이 작용하는 직교이방성판의 좌굴거동에 관한 것으로서, 하중이 재하된 두 변은 단순지지되어 있으며 하중이 재하되지 않은 두 변은 회전에 대해 탄성구속된 경계조건을 포함하여 다양한 경계조건을 갖는 직교이방성판의 좌굴해석식을 정밀해법을 사용하여 유도하였다. 좌굴해석 수행 결과를 사용하여 하중이 재하되지 않은 두 변이 특정 경계조건인 경우를 포함하여 회전에 대해 탄성구속된 판의 좌굴해석을 위한 근사식을 판의 형상비와 탄성구속 정도를 나타내는 계수 및 재료의 성질의 함수로 제시하였다. 제시된 근사식을 사용할 경우 재료의 성질과 판의 형상비 및 하중이 재하되지 않은 변의 탄성구속정도를 알면 단순계산으로 직교이방성판의 좌굴해석을 수행할 수 있도록 하였다. 여러 가지 직교이방성 재료에 대해 근사식에 의한 해석결과와 정밀해법에 의한 해석결과를 비교한 결과 1.5% 미만의 차를 나타냈었다.

Large deflection analysis of orthotropic, elliptic membranes

  • Chucheepsakul, Somchai;Kaewunruen, Sakdirat;Suwanarat, Apiwat
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.625-638
    • /
    • 2009
  • Applications of membrane mechanisms are widely found in nano-devices and nano-sensor technologies nowadays. An alternative approach for large deflection analysis of the orthotropic, elliptic membranes - subject to gravitational, uniform pressures often found in nano-sensors - is described in this paper. The material properties of membranes are assumed to be orthogonally isotropic and linearly elastic, while the principal directions of elasticity are parallel to the coordinate axes. Formulating the potential energy functional of the orthotropic, elliptic membranes involves the strain energy that is attributed to inplane stress resultant and the potential energy due to applied pressures. In the solution method, Rayleigh-Ritz method can be used successfully to minimize the resulting total potential energy generated. The set of equilibrium equations was solved subsequently by Newton-Raphson. The unparalleled model formulation capable of analyzing the large deflections of both circular and elliptic membranes is verified by making numerical comparisons with existing results of circular membranes as well as finite element solutions. The results are found in excellent agreements at all cases. Then, the parametric investigations are given to delineate the impacts of the aspect ratios and orthotropic elasticity on large static tensions and deformations of the orthotropic, elliptic membranes.

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

면외하중을 받는 상이한 직교 이방성 평면내의 평행균열 (Parallel Crack in Bonded Dissimilar Orthotropic Planes Under Out-of-Plane Loading)

  • 최성렬;권용수;채영석
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.170-180
    • /
    • 1995
  • A parallel crack in bonded dissimilar orthotropic planes under out-of-plane loading is analyzed. The problem is formulated by Fourier integral transforms, and reduced to a pair of dual integral equations. By solving the integral equations, the asymptotic stress and displacement fields near the crack tip are determined in closed form, from which the stress intensity factor and energy release rate are obtained. Discontinuity in the stress intensity factor as the distance ratio h/a of the parallel crack approaches zero is found, while the energy releas rate is shown to be continuous at h/a = 0. This information can immediately be used to generate the stress intensity factor for the parallel crack near the interface. By employing "the maximum energy release rate criterion", it could be shown in the case of no existing crack initially that the parallel crack is formed far from the interface for the more compliant material, while it is formed close to the interface for the stiffer material. material.

Transient thermal stresses of orthotropic functionally graded thick strip due to nonuniform heat supply

  • Ootao, Yoshihiro;Tanigawa, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.559-573
    • /
    • 2005
  • This paper is concerned with the theoretical treatment of transient thermal stresses involving an orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction. The thermal and thermoelastic constants of the strip are assumed to possess orthotropy and vary exponentially in the thickness direction. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the exact solution for the simply supported strip under the state of plane strain. Some numerical results for the temperature change, the displacement and the stress distributions are shown in figures. Furthermore, the influence of the orthotropy and nonhomogeneity of the material is investigated.

The Influence of the Aspect Ratio on the Composite Material Bridge Deck Structures

  • Han, Bong-Koo
    • Composites Research
    • /
    • 제27권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Theories for composite material structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates, the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the author. Most of the bridge deck structures on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms $M_x$ on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.