• 제목/요약/키워드: Orthopedic implants

검색결과 83건 처리시간 0.037초

한국인에 대한 새로운 관절주위 잠김금속판의 해부학적 적합성: 사체를 이용한 연구 (Anatomic Conformity of New Periarticular Locking Plates for Koreans: A Biomechanical Cadaveric Study)

  • 윤용철;오종건;김영우;김학준;문홍주;김남렬
    • Journal of Trauma and Injury
    • /
    • 제26권3호
    • /
    • pp.163-169
    • /
    • 2013
  • Purpose: This study was conducted to confirm the anatomic conformity of the new periarticular locking plates designed by Zimmer on Korean adult bones and to identify the structures at risk during the application of these implants. Methods: The study was performed on the humerus, radius, and tibia of 10 adult cadavers(6 males and 4 females) procured from the cadaveric lab of our hospital. Anteroposterior (AP) and lateral X-rays were taken to confirm that the cadavers were free of any unusual lesions or anatomic variations. We used the 3.5-mm proximal humerus plate, 2.7-mm distal radius plate, 3.5- and 5.0-mm proximal tibia plates, and 3.5-mm distal tibia plate developed by Zimmer, Inc. (Zimmer periarticular locking plate). The longest plate from each group was used to confirm anatomical conformity. Standard approaches were used for each area, and soft tissue was retracted in order to pass the plate beneath the muscle. The position of the plate was confirmed using standard AP and lateral view X-rays. After this procedure had been completed, the region was dissected along the length of the implant to determine the conformity of the implant to bone and the penetrations of screws into the articular surface or violations of any vital structures, such as nerves, blood vessels, or tendons. Results: Excellent anatomical conformity was observed with Zimmer periarticular locking plates for Korean adults. The tibial nerve and the posterior tibial artery were found to be structures at risk when applying a distal tibial plate. Conclusion: Additional posterolateral fixation is recommended when dealing with cases of tibial plateau fracture when the fracture line extends to the posterolateral cortex. We recommend taking proper views using 10~15 degrees of internal rotation to ensure correct screw length and, thus, avoid penetration of vital structures and tendons.

3D프린팅 제조기반 골절합용 금속판의 열처리 조건에 따른 기계적 성능 특성 (Mechanical Properties Characteristics according to Heat Treatment Conditions of Medical Bone Plates by 3D Printing)

  • 정현우;박성준;우수헌
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권2호
    • /
    • pp.116-123
    • /
    • 2022
  • This study analyzes the Mechanical properties of a medical bone plate by 3D printing. With the recent development of 3D printing technology, it is being applied in various fields. In particular, in the medical field, the use of 3D printing technology, which was limited to the existing orthosis and surgical simulation, has recently been used to replacement bones lost due to orthopedic implants using metal 3D printing. The field of application is increasing, such as replacement. However, due to the manufacturing characteristics of 3D printing, micro pores are generated inside the metal printing output, and it is necessary to reduce the pores and the loss of mechanical properties through post-processing such as heat treatment. Accordingly, the purpose of this study is to analyze the change in mechanical performance characteristics of medical metal plates manufactured by metal 3D printing under various conditions and to find efficient metal printing results. The specimen to be used in the experiment is a metal plate for trauma fixation applied to the human phalanx, and it was manufactured using the 'DMP Flex 100(3D Systems, USA), a metal 3D printer of DMLS (Direct Metal Laser Sintering) method. It was manufactured using the PBF(Powder Bed Fusion) method using Ti6Al4V ELI powder material.

Modern Possibilities and Prospects of Nanotechnology in Dentistry

  • Sergiy, Chertov;Valery, Kaminskyy;Olha, Tatarina;Oleksii, Mandych;Andrii, Oliinyk
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.97-106
    • /
    • 2022
  • Objective. Nanotechnology is spreading among all areas of life, from everyday devices to medicine. The concept of nanotechnology argues that not only can new physical and chemical properties of materials be discovered, but also the new potential of nanostructures when reduced to the nanoscale. The growing interest in the application of nanomaterials in dentistry contributes to the proliferation of the range of nanomaterials used by specialists. The purpose of this review of information sources was to analyze the prospects for the use of nanomaterials in dentistry. Methods. We used the bibliographic semantic method of research, for which we analyzed electronic databases of primary literature sources Scopus, Web of Science, Research Gate, PubMed, MDPI, and MedLine. English-language scientific articles published after 2017 were taken into consideration. Results. According to the results of a search study among modern information primary sources, nanotechnology improves the preventive properties of oral care products, improves the structural-mechanical and aesthetic properties of composite mixtures for dentistry, overcomes the problems of the clinical application of dental implants. Despite the prospects of nanotechnology applications in medicine in general and dentistry in particular, the existing economic and technological problems require a thorough solution for further implementation of nanostructures. Scientific novelty. For the first time, the analysis of modern trends in the application of nanotechnology in dentistry is carried out and the peculiarities of materials are highlighted, the problems and prospects of nanostructures implementation in modern dental implantology are given, physical, chemical, mechanical, and antibacterial properties of nanomaterials are evaluated. The effect of nanomaterials on the microbial adhesion of the tooth or implant surface is described. Practical significance. The presented publication can become a scientific basis for the solution of urgent problems hindering the introduction of nanotechnology into dental practice. Conclusions. Thus, the use of nanostructures opens up great opportunities for the treatment of a wide range of diseases, not only of dental nature but also in medicine in general.

Numerical modeless of the damage, around inclusion in the orthopedic cement PMMA

  • Mohamed, Cherfi;Smail, Benbarek;Bouiadjra, Bachir;Serier, B.
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.717-731
    • /
    • 2016
  • In orthopedic surgery and more especially in total arthroplastie of hip, the fixing of the implants generally takes place essentially by means of constituted surgical polymer cement. The damage of this materiel led to the fatal rupture and thus loosening of the prosthesis in total hip, the effect of over loading as the case of tripping of the patient during walking is one of the parameters that led to the damage of this binder. From this phenomenon we supposed that a remain of bone is included in the cement implantation. The object of this work is to study the effect of this bony inclusion in the zones where the outside conditions (loads and geometric shapes) can provoke the fracture of the cement and therefore the aseptic lousing of the prosthesis. In this study it was assumed the presence of two bones -type inclusions in this material, one after we analyzed the effect of interaction between these two inclusions damage of damage to this material. One have modeled the damage in the cement around this bone inclusion and estimate the crack length from the damaged cement zone in the acetabulum using the finite element method, for every position of the implant under the extreme effort undergone by the prosthesis. We noted that the most intense stress position is around the sharp corner of the bone fragment and the higher level of damage leads directly the fracture of the total prosthesis of the hip.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

요골두 치환술의 임상적 적용 (Clinical Application of Radial Head Prosthesis)

  • 문준규
    • Clinics in Shoulder and Elbow
    • /
    • 제14권1호
    • /
    • pp.140-145
    • /
    • 2011
  • 목적: 금속 요골두 치환술은 주관절 불안정성을 동반한 고정할 수 없는 분쇄된 요골두 골절의 치료로 최근 다양한 임플란트의 개발로 널리 사용되고 있다. 저자는 금속성 요골두 치환술의 적응증과 국내에 사용중인 임플란트의 종류와 수술 술기를 문헌 고찰과 함께 기술하고자 한다. 대상 및 방법: 요골두 치환술의 주 적응증은 동반된 연부조직 손상으로 인한 주관절의 불안정성이 있고, 요골두의 분쇄 골절로 안정적인 내고정이 불가능한 골절이다. 이러한 경우 과거 시행되었던 요골두 절제술은 많은 합병증의 발생으로 금기시되고 있다. 현재 국내에서는 양극성, 압박 고정 단극성 및 이완 고정 단극성 임플란트의 3종류가 수입되어 사용되고 있다. 요골두 치환술은 궁극적으로 원래의 요골두의 크기와 길이로 복원하는 것이 중요하다. 과도하게 긴 요골두의 삽입은 흔한 합병증으로 수술 시 주의가 필요하다. 결과 및 결론: 요골두 치환술은 적절한 적응증과 정확한 수술 술기로 만족할 만한 임상적 결과를 얻을 수 있다. 향후 장기추시 연구와 다양한 치환물들의 임상적인 비교 연구가 필요하다.

개에서 Poly-L-lactic-acid 이식물의 생분해성과 생체적합성에 관한 연구 (Study of Bio-absorbability and Bio-compatibility of Poly-L-lactic-acid Implant in Dogs)

  • 박보영;김영기;박종윤;박종만;고필옥;장홍희;이희천;이효종;연성찬
    • 한국임상수의학회지
    • /
    • 제24권2호
    • /
    • pp.182-191
    • /
    • 2007
  • Bioabsorbable devices have been utilized and experimented in many aspects of orthopaedic surgery. Depending upon their constituent polymers, these materials can be tailored to provide sufficient rigidity to allow bone healing, retain mechanical strength for certain period of time, and then eventually begin to undergo degradation. The objective of this study was to estimate extent in which Poly-L-latic acid (PLLA) implants had bioabsorbability and biocompatibility with bone and soft tissue in dogs and also to develop bioabsorbable, biocompatible materials with the appropriate strength and degradation characteristics to allow for regular clinical use for treating orthopedic problems in humans as well as animals. Eighteen dogs were used as experimental animals and were inserted two types of PLLA implants. PLLA rods were inserted into subcutaneous tissue of back or the abdomen wall. And the rods were tested for material properties including viscosity, molecular weight, melting point, melting temperature, crystallinity, flexural strength, and flexural modulus over time. PLLA screws were inserted through cortical bone into bone marrow in the femur of the dogs and stainless steel screw was inserted in the same femur. Radiographs were taken after surgery to observe locations of screw. Histological variations including cortical bone response, muscular response, bone marrow response were analyzed over the time for 62weeks. The physical properties of PLLA rods had delicate balances between mechanical, thermal and viscoelastic factors. PLLA screws did not induce any harmful effects and clinical complications on bone and soft tissue for degradation period. These results suggest that PLLA implants could be suitable for clinical use.

Tribological performance of UHMWPE reinforced with carbon nanotubes in bovine serum

  • Zoo, Yeong-Seok;Lim, Dae-Soon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.363-364
    • /
    • 2002
  • Although the factors that cause the failure of orthopedic implants were not clearly determined, it was reported that the shapes of wear debris affect the tribological behavior of artificial implant. Many researches were conducted to examine the wear mechanism by debris but the role of debris shape in inflammatory reaction remains unclear. To observe the debris shape by addition of reinforcement, carbon nanotubes ( CNTs ) were added to ultra high molecular weight polyethylene ( UHMWPE ) to investigate the reinforcement effect of CNTs. CNTs which have a diameter of about 10-50 nm, while their length is about 3-5 nm were produced by the catalytic decomposition of the acetylene gas using a tube furnace. Plate on disc type wear test were performed to evaluate the tribological performance of UHMWPE composites reinforced with CNTs in lubricating condition ( bovine serum ). The wear losses of CNT added UHMWPE in bovine serum were significantly reduced. Worn surface and wear debris of UHMWPE with CNTs and without CNTs were compared to investigate the reinforcement effect of CNT on tribological behavior.

  • PDF

인공 슬관절 전치환술 시뮬레이션을 위한 형상 모델링 (A Total Knee Arthroplasty Simulation Using 3D Medical Images)

  • 서정우;전용태;박세형;최귀원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.896-902
    • /
    • 2005
  • An orthopedic surgeon normally gets the operational parameters of total knee arthroplasty from medical images(CT, MRI). Anatomical axis, mechanical axis, the width and height of femur, or tibia are the most important parameters related with accomplishment of TKA. This paper presents a methodology of simulation that virtually operates TKA according to 2D medical images. Using this simulator, some important parameters for operation can be achieved before hand. The simulator provides the 3D computational model of a knee joint and then derives the proper size of implant corresponding to the joint. The whole process of TKA can be simulated such as clipping a knee joint, assembling the joint and its implants, visualizing all the operation steps, deriving some crucial parameters such as anatomical axis and cutting thickness, and predicting the result of TKA. Some examples are given and discussed to validate the methodology.

  • PDF

Effect of Hot Water and Heat Treatment on the Apatite-forming Ability of Titania Films Formed on Titanium Metal via Anodic Oxidation in Acetic Acid Solutions

  • Cui, Xinyu;Cui, Xinyu
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile.The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  • PDF