Browse > Article
http://dx.doi.org/10.22937/IJCSNS.2022.22.10.14

Modern Possibilities and Prospects of Nanotechnology in Dentistry  

Sergiy, Chertov (Department of Propaedeutic and Surgical Dentistry Medical Faculty No. 3, Zaporizhzhia State Medical University)
Valery, Kaminskyy (Shupyk National Healthcare University of Ukraine, Maxillo-Facial Surgery Department)
Olha, Tatarina (Department of Orthopedic Dentistry National Pirogov Memorial Medical University)
Oleksii, Mandych (Department of therapeutic dentistry FPGE Danylo Halytsky Lviv National Medical University Lviv)
Andrii, Oliinyk (Danylo Halytsky Lviv National Medical University, Faculty of Postgraduate Education, Department of Oral Surgery and Prosthetic Dentistry)
Publication Information
International Journal of Computer Science & Network Security / v.22, no.10, 2022 , pp. 97-106 More about this Journal
Abstract
Objective. Nanotechnology is spreading among all areas of life, from everyday devices to medicine. The concept of nanotechnology argues that not only can new physical and chemical properties of materials be discovered, but also the new potential of nanostructures when reduced to the nanoscale. The growing interest in the application of nanomaterials in dentistry contributes to the proliferation of the range of nanomaterials used by specialists. The purpose of this review of information sources was to analyze the prospects for the use of nanomaterials in dentistry. Methods. We used the bibliographic semantic method of research, for which we analyzed electronic databases of primary literature sources Scopus, Web of Science, Research Gate, PubMed, MDPI, and MedLine. English-language scientific articles published after 2017 were taken into consideration. Results. According to the results of a search study among modern information primary sources, nanotechnology improves the preventive properties of oral care products, improves the structural-mechanical and aesthetic properties of composite mixtures for dentistry, overcomes the problems of the clinical application of dental implants. Despite the prospects of nanotechnology applications in medicine in general and dentistry in particular, the existing economic and technological problems require a thorough solution for further implementation of nanostructures. Scientific novelty. For the first time, the analysis of modern trends in the application of nanotechnology in dentistry is carried out and the peculiarities of materials are highlighted, the problems and prospects of nanostructures implementation in modern dental implantology are given, physical, chemical, mechanical, and antibacterial properties of nanomaterials are evaluated. The effect of nanomaterials on the microbial adhesion of the tooth or implant surface is described. Practical significance. The presented publication can become a scientific basis for the solution of urgent problems hindering the introduction of nanotechnology into dental practice. Conclusions. Thus, the use of nanostructures opens up great opportunities for the treatment of a wide range of diseases, not only of dental nature but also in medicine in general.
Keywords
nanotechnology; dentistry; composites; implants; endodontics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. H. Saw Hla, Y. Choi, J. S. Park, "Obstacle avoidance algorithm for collective movement in nanorobots," IJCSNS International Journal of Computer Science and Network Security, vol. 8, no. 11, pp. 302-309, 2008. URL: http://paper.ijcsns.org/07_book/200811/20081143.pdf
2 H. Moradpoor, S. Mohseno, H. Mozaffari, R. Sharifi, et al, "An overview of recent progress in dental applications of zinc oxide nanoparticles," RSC Advances, vol. 11, pp. 21189-21206, 2021. DOI: 10.1039/D0RA10789A. URL: https://pubs.rsc.org/en/content/articlelanding/2021/ra/d0ra10789a   DOI
3 J. Fahad, A. Rida, A. K. Bhardwaj and A.K.Jaiswal, "Design optimization of optical communication systems using carbon nanotubes (CNTs) based on optical code division multiple access (OCDMA)," IJCSNS International Journal of Computer Science and Network Security, vol. 14, no. 12, pp. 102-112, 2014. URL: http://paper.ijcsns.org/07_book/201412/20141219.pdf
4 M. Azizi-Lalabadi, A. Ehsani, B. Divband and M. Alizadeh-Sani, "Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4a zeolite and evaluation the morphological characteristic," Scientific Reports, vol. 9, pp. 1-10, 2019. DOI: 10.1038/s41598-019-54025-0. URL: https://pubmed.ncbi.nlm.nih.gov/31767932/   DOI
5 S. Bayda, M. Adeel, T. Tuccinardi, et al, "The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine," Molecules, vol. 25, no 1, pp. 112-127, 2019. DOI: 10.3390/molecules25010112. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982820/   DOI
6 N. Pitts, S. Twetman, J. Fisher, et al, "Understanding dental caries as a non-communicable disease," British Dental Journal, vol. 231, pp. 749-753, 2021. DOI: 10.1038/s41415-021-3775-4. URL: https://pubmed.ncbi.nlm.nih.gov/34921271/   DOI
7 R. A. Gibbs, "The human genome project changed everything," Nature Reviews Genetics, vol. 21, pp. 575-576, 2020. DOI: 10.1038/s41576-020-0275-3. URL: https://pubmed.ncbi.nlm.nih.gov/32770171/   DOI
8 Y. Zhang, K. Gulati, Z. Li and P. Di, "Dental implant nano-engineering: advances, limitations and future directions", Nanomaterials, vol. 11, no. 10, pp. 2489-2515, 2021. DOI: 10.3390/nano11102489. URL: https://www.mdpi.com/2079-4991/11/10/2489   DOI
9 N. Raura, A. Garg and A. Arora, "Nanoparticle technology and its implications in endodontics: a review," Biomaterials Research, vol. 24, pp. 21-55, 2020. DOI: 10.1186/s40824-020-00198-z. URL: https://biomaterialsres.biomedcentral.com/articles/10.1186/s40824-020-00198-z   DOI
10 I. Zilinskaite-Petrauskiene and S. Rethnam Haug, "A comparison of endodontic treatment factors, operator difficulties, and perceived oral health-related quality of life between elderly and young patients," Journal of Endodontics, vol. 47, pp. 1844-1853, 2021. DOI: 10.1016/j.joen.2021.08.017. URL: https://www.sciencedirect.com/science/article/pii/S0099239921006403   DOI
11 H. Jing, X. He and J.Zheng, "Exosomes and regenerative medicine: state of the art and perspectives," Translational Research, vol. 196, pp. 1-16, 2018. DOI: 10.1016/j.trsl.2018.01.005. URL: https://www.researchgate.net/publication/322844713_Exoso mes_and_regenerative_medicine_State_of_the_art_and_perspectives   DOI
12 R. S. Al-Hamdan, B. Almutairi, H. F. Kattan, N. A. Alsuwailem, et al, "Influence of hydroxyapatite nanospheres in dentin adhesive on the dentin bond integrity and degree of conversion: A scanning electron microscopy (SEM), raman, fourier transform-infrared (FTIR), and microtensile study," Polymers, vol. 12, pp. 2948-2963, 2020. DOI: 10.3390/polym12122948. URL: https://www.mdpi.com/2073-4360/12/12/2948   DOI
13 G. Moraes, C. Zambom and W. L. Siqueira, "Nanoparticles in dentistry: a comprehensive review," Pharmaceuticals, vol. 14, pp. 752-781, 2021. DOI: 10.3390/ph14080752. URL: https://pubmed.ncbi.nlm.nih.gov/34451849/   DOI
14 O. Baru, A. Nutu, C. Braicu, C. Cismaru, et al, "Angiogenesis in regenerative dentistry: are we far enough for therapy," International Journal of Molecular Sciences, vol. 22, pp. 929-948, 2021. DOI: 10.3390/ijms22020929. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832295/   DOI
15 X. Wu, S. Ding, K. Lin and J. Su, "A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration", Journal of Materials Chemistry B, vol. 5, pp. 3084-3102, 2017. DOI: 10.1039/C6TB03067J. URL: https://www.researchgate.net/publication/314161119_A_Review_on_the_Biocompatibility_and_Potential_Applications_of_Graphene_in_Inducing_Cell_Differentiation_and_Tissue_Regeneration   DOI
16 A. Lubojanski, M. Dobrzynski, N. Nowak, J. Rewak-Soroczynska, et al, "Application of selected nanomaterials and ozone in modern clinical dentistry," Nanomaterials, vol. 11, pp. 259-289, 2021. DOI: 10.3390/nano11020259. URL: https://www.mdpi.com/2079-4991/11/2/259   DOI
17 M. Toledano-Osorio, E. Osorio, F. S. Aguilera, A. Luis Medina-Castillo, et al, "Improved reactive nanoparticles to treat dentin hypersensitivity," Acta Biomaterials, vol. 72, pp. 371-380, 2018. DOI: 10.1016/j.actbio.2018.03.033. URL: https://pubmed.ncbi.nlm.nih.gov/29581027/   DOI
18 W. Song and S. Ge, "Application of antimicrobial nanoparticles in dentistry," Molecules, vol. 24, pp. 1033-1048, 2019. DOI: 10.3390/molecules24061033. URL: https://www.researchgate.net/publication/331837926_Application_of_Antimicrobial_Nanoparticles_in_Dentistry   DOI
19 G. Tulu, B. Kaya, E. Cetin and M. Kole, "Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms," Orthodonty, vol. 109, pp. 802-811, 2021. DOI: 10.1007/s10266-021-00601-8. URL: https://pubmed.ncbi.nlm.nih.gov/34047872/   DOI
20 A. C. Ionescu, G. Cazzaniga, M. Ottobelli, F. Garcia-Godoy and E. Brambilla, "Substituted nano-hydroxyapatite toothpastes reduce biofilm formation on enamel and resin-based composite surfaces," Journal of Functional Biomaterials, vol. 11, p. 36, 2020. DOI: 10.3390/jfb11020036. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353493/   DOI
21 W. Zakrzewski, M. Dobrzynski, W. Dobrzynski, A. Zawadzka-Knefel, et al, "Nanomaterials application in orthodontics," Nanomaterials, vol. 11, pp. 337-356, 2021. DOI: 10.3390/nano11020337. URL: https://www.researchgate.net/publication/348859728_Nanomaterials_Application_in_Orthodontics   DOI
22 Q. Peng, J. Liu, T. Zhang, T. X. Zhang, et al, "Digestive enzyme corona formed in the gastrointestinal tract and its impact on epithelial cell uptake of nanoparticles". Biomacromolecules, vol. 20, pp. 1789-1797, 2019. DOI: 10.1021/acs.biomac.9b00175. URL: https://pubmed.ncbi.nlm.nih.gov/30893550/   DOI
23 M. Matsumoto-Nakano, "Role of Streptococcus mutans surface proteins for biofilm formation," Japanese Dental Science Review, vol. 54, pp. 22-29, 2018. DOI: /10.1016/j.jdsr.2017.08.002. URL: https://pubmed.ncbi.nlm.nih.gov/29628998/   DOI
24 J. K. Patra, G. Das, L. F. Fraceto, et al, "Nano based drug delivery systems: recent developments and future prospects," Journal of Nanobiotechnology, vol. 16, pp. 1-33, 2018. DOI: 10.1186/s12951-018-0392-8. URL: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-018-0392-8   DOI
25 W. A. Bhutto, A. M. Soomro, A. H. Nizamani, H. Saleem, et al, "Controlled growth of zinc oxide nanowire arrays by chemical vapor deposition (cvd) method," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 8, pp. 135-141, 2019. URL: http://paper.ijcsns.org/07_book/201908/20190820.pdf
26 M. Germain, F. Caputo, S. Metcalfe, et al, "Delivering the power of nanomedicine to patients today," Journal of controlled release: official journal of the Controlled Release Society, vol. 326, pp. 164-171, 2020. DOI: 10.1016/j.jconrel.2020.07.007. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362824/   DOI
27 A. C. Anselmo and S. Mitragotri, "Nanoparticles in the clinic: an update," Bioengineering & translational medicine, vol. 4, no. 3, p. e10143, 2019. DOI: 10.1002/btm2.10143. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764803/   DOI
28 S. Verma, R. Chevvuri and H. Sharma, "Nanotechnology in dentistry: unleashing the hidden gems," Journal of Indian Society of Periodontology, vol. 22, no. 3, pp. 196-200, 2018. DOI: 10.4103/jisp.jisp_35_18. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009154/   DOI
29 E. Bologa, S. Stoleriu, G. Iovan, C. A. Ghiorghe, et al, "Effects of dentifrices containing nanohydroxyapatite on dentinal tubule occlusion - a scanning electron microscopy and edx study," Applied. Science., vol. 10, p. 6513, 2020. DOI: 10.3390/app10186513. URL: https://www.mdpi.com/2076-3417/10/18/6513   DOI
30 M. S. Alenazy, H. A. Mosadomi, S. Al-Nazhan and M. R. Rayyan, "Clinical considerations of nanobiomaterials in endodontics: A systematic review," Saudi endodontic journal, vol. 8, pp. 163-169, 2018. DOI: 10.4103/sej.sej_67_16. URL: https://www.researchgate.net/publication/326977008_Clinical_considerations_of_nanobiomaterials_in_endodontics_A_systematic_review   DOI
31 D. S. D. Pathak "Advances in pulp capping materials: a review," IOSR Journal of dental and medical sciences, vol. 16, pp. 31-37, 2017. DOI: 10.9790/0853-1602073137. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939574/   DOI
32 K. Herman, M. Wujczyk, M. Dobrzynski, D. Diakowska, et al, "In vitro assessment of long-term fluoride ion release from nanofluorapatite," Materials, vol. 14, pp. 3747-3761, 2021. DOI: 10.3390/ma14133747. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269907/   DOI
33 B. Wiatrak, P. Sobierajska, M. Szandruk-Bender, P. Jawien, et al, "Nanohydroxyapatite as a biomaterial for peripheral nerve regeneration after mechanical damage - In vitro study," International Journal of Molecular Science, vol. 22, pp. 4454-4470, 2021. DOI: 10.3390/ijms22094454. URL: https://pubmed.ncbi.nlm.nih.gov/33923239/   DOI
34 N. Pajares-Chamorro and X. Chatzistavrou, "Bioactive glass nanoparticles for tissue regeneration", ACS Omega, vol. 5, pp. 12716-12726, 2020. DOI: 10.1021/acsomega.0c00180. URL: https://pubmed.ncbi.nlm.nih.gov/32548455/   DOI
35 H. Ibrahim, "Nanotechnology and its applications to medicine: an overview," QJM: An International Journal of Medicine, vol. 113, p. 202, 2020. DOI: 10.1093/qjmed/hcaa060.008. URL: https://www.researchgate.net/publication/274837597_Nanotechnology_and_its_Applications_in_Medicine   DOI
36 W. Zakrzewski, M. Dobrzynski, Z. Rybak and M. Szymonowicz, "Selected nanomaterials' application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process," Nanomaterials, vol. 10, pp. 1216-1245, 2020. DOI: 10.3390/nano10061216. URL: https://www.researchgate.net/publication/342383456_Selected_Nanomaterials'_Application_Enhanced_with_the_Use_of_Stem_Cells_in_Acceleration_of_Alveolar_Bone_Regeneration_during_Augmentation_Process   DOI
37 V. Vishwanath and H. Rao, "Gutta-percha in endodontics - a comprehensive review of material science", Journal of conservative dentistry: JCDI, vol. 22, pp. 216-222, 2019. DOI: 10.4103/JCD.JCD_420_18. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632621/   DOI
38 F. Ahmed, S. T. Prashanth, K. Sindhu, A. Nayak and S. Chaturvedi, "Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: an in vitro study," The Journal of Indian Society of Pedodontics and Preventive Dentistry, vol. 37, pp. 46-54, 2019. DOI: 10.4103/JISPPD. JISPPD_239_18 7. URL: https://www.jisppd.com/article.asp?issn=0970-4388;year=2019;volume=37;issue=1;spage=46;epage=54;aulast=Ahmed   DOI