DOI QR코드

DOI QR Code

Modern Possibilities and Prospects of Nanotechnology in Dentistry

  • Sergiy, Chertov (Department of Propaedeutic and Surgical Dentistry Medical Faculty No. 3, Zaporizhzhia State Medical University) ;
  • Valery, Kaminskyy (Shupyk National Healthcare University of Ukraine, Maxillo-Facial Surgery Department) ;
  • Olha, Tatarina (Department of Orthopedic Dentistry National Pirogov Memorial Medical University) ;
  • Oleksii, Mandych (Department of therapeutic dentistry FPGE Danylo Halytsky Lviv National Medical University Lviv) ;
  • Andrii, Oliinyk (Danylo Halytsky Lviv National Medical University, Faculty of Postgraduate Education, Department of Oral Surgery and Prosthetic Dentistry)
  • Received : 2022.10.05
  • Published : 2022.10.30

Abstract

Objective. Nanotechnology is spreading among all areas of life, from everyday devices to medicine. The concept of nanotechnology argues that not only can new physical and chemical properties of materials be discovered, but also the new potential of nanostructures when reduced to the nanoscale. The growing interest in the application of nanomaterials in dentistry contributes to the proliferation of the range of nanomaterials used by specialists. The purpose of this review of information sources was to analyze the prospects for the use of nanomaterials in dentistry. Methods. We used the bibliographic semantic method of research, for which we analyzed electronic databases of primary literature sources Scopus, Web of Science, Research Gate, PubMed, MDPI, and MedLine. English-language scientific articles published after 2017 were taken into consideration. Results. According to the results of a search study among modern information primary sources, nanotechnology improves the preventive properties of oral care products, improves the structural-mechanical and aesthetic properties of composite mixtures for dentistry, overcomes the problems of the clinical application of dental implants. Despite the prospects of nanotechnology applications in medicine in general and dentistry in particular, the existing economic and technological problems require a thorough solution for further implementation of nanostructures. Scientific novelty. For the first time, the analysis of modern trends in the application of nanotechnology in dentistry is carried out and the peculiarities of materials are highlighted, the problems and prospects of nanostructures implementation in modern dental implantology are given, physical, chemical, mechanical, and antibacterial properties of nanomaterials are evaluated. The effect of nanomaterials on the microbial adhesion of the tooth or implant surface is described. Practical significance. The presented publication can become a scientific basis for the solution of urgent problems hindering the introduction of nanotechnology into dental practice. Conclusions. Thus, the use of nanostructures opens up great opportunities for the treatment of a wide range of diseases, not only of dental nature but also in medicine in general.

Keywords

References

  1. H. Ibrahim, "Nanotechnology and its applications to medicine: an overview," QJM: An International Journal of Medicine, vol. 113, p. 202, 2020. DOI: 10.1093/qjmed/hcaa060.008. URL: https://www.researchgate.net/publication/274837597_Nanotechnology_and_its_Applications_in_Medicine
  2. J. K. Patra, G. Das, L. F. Fraceto, et al, "Nano based drug delivery systems: recent developments and future prospects," Journal of Nanobiotechnology, vol. 16, pp. 1-33, 2018. DOI: 10.1186/s12951-018-0392-8. URL: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-018-0392-8
  3. S. Bayda, M. Adeel, T. Tuccinardi, et al, "The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine," Molecules, vol. 25, no 1, pp. 112-127, 2019. DOI: 10.3390/molecules25010112. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982820/
  4. W. A. Bhutto, A. M. Soomro, A. H. Nizamani, H. Saleem, et al, "Controlled growth of zinc oxide nanowire arrays by chemical vapor deposition (cvd) method," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 8, pp. 135-141, 2019. URL: http://paper.ijcsns.org/07_book/201908/20190820.pdf
  5. M. Germain, F. Caputo, S. Metcalfe, et al, "Delivering the power of nanomedicine to patients today," Journal of controlled release: official journal of the Controlled Release Society, vol. 326, pp. 164-171, 2020. DOI: 10.1016/j.jconrel.2020.07.007. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362824/
  6. N. Pitts, S. Twetman, J. Fisher, et al, "Understanding dental caries as a non-communicable disease," British Dental Journal, vol. 231, pp. 749-753, 2021. DOI: 10.1038/s41415-021-3775-4. URL: https://pubmed.ncbi.nlm.nih.gov/34921271/
  7. A. C. Anselmo and S. Mitragotri, "Nanoparticles in the clinic: an update," Bioengineering & translational medicine, vol. 4, no. 3, p. e10143, 2019. DOI: 10.1002/btm2.10143. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764803/
  8. S. Verma, R. Chevvuri and H. Sharma, "Nanotechnology in dentistry: unleashing the hidden gems," Journal of Indian Society of Periodontology, vol. 22, no. 3, pp. 196-200, 2018. DOI: 10.4103/jisp.jisp_35_18. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009154/
  9. R. A. Gibbs, "The human genome project changed everything," Nature Reviews Genetics, vol. 21, pp. 575-576, 2020. DOI: 10.1038/s41576-020-0275-3. URL: https://pubmed.ncbi.nlm.nih.gov/32770171/
  10. M. Matsumoto-Nakano, "Role of Streptococcus mutans surface proteins for biofilm formation," Japanese Dental Science Review, vol. 54, pp. 22-29, 2018. DOI: /10.1016/j.jdsr.2017.08.002. URL: https://pubmed.ncbi.nlm.nih.gov/29628998/
  11. F. Ahmed, S. T. Prashanth, K. Sindhu, A. Nayak and S. Chaturvedi, "Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: an in vitro study," The Journal of Indian Society of Pedodontics and Preventive Dentistry, vol. 37, pp. 46-54, 2019. DOI: 10.4103/JISPPD. JISPPD_239_18 7. URL: https://www.jisppd.com/article.asp?issn=0970-4388;year=2019;volume=37;issue=1;spage=46;epage=54;aulast=Ahmed
  12. M. Azizi-Lalabadi, A. Ehsani, B. Divband and M. Alizadeh-Sani, "Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4a zeolite and evaluation the morphological characteristic," Scientific Reports, vol. 9, pp. 1-10, 2019. DOI: 10.1038/s41598-019-54025-0. URL: https://pubmed.ncbi.nlm.nih.gov/31767932/
  13. E. Bologa, S. Stoleriu, G. Iovan, C. A. Ghiorghe, et al, "Effects of dentifrices containing nanohydroxyapatite on dentinal tubule occlusion - a scanning electron microscopy and edx study," Applied. Science., vol. 10, p. 6513, 2020. DOI: 10.3390/app10186513. URL: https://www.mdpi.com/2076-3417/10/18/6513
  14. A. C. Ionescu, G. Cazzaniga, M. Ottobelli, F. Garcia-Godoy and E. Brambilla, "Substituted nano-hydroxyapatite toothpastes reduce biofilm formation on enamel and resin-based composite surfaces," Journal of Functional Biomaterials, vol. 11, p. 36, 2020. DOI: 10.3390/jfb11020036. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353493/
  15. I. Zilinskaite-Petrauskiene and S. Rethnam Haug, "A comparison of endodontic treatment factors, operator difficulties, and perceived oral health-related quality of life between elderly and young patients," Journal of Endodontics, vol. 47, pp. 1844-1853, 2021. DOI: 10.1016/j.joen.2021.08.017. URL: https://www.sciencedirect.com/science/article/pii/S0099239921006403
  16. A. Lubojanski, M. Dobrzynski, N. Nowak, J. Rewak-Soroczynska, et al, "Application of selected nanomaterials and ozone in modern clinical dentistry," Nanomaterials, vol. 11, pp. 259-289, 2021. DOI: 10.3390/nano11020259. URL: https://www.mdpi.com/2079-4991/11/2/259
  17. W. Zakrzewski, M. Dobrzynski, W. Dobrzynski, A. Zawadzka-Knefel, et al, "Nanomaterials application in orthodontics," Nanomaterials, vol. 11, pp. 337-356, 2021. DOI: 10.3390/nano11020337. URL: https://www.researchgate.net/publication/348859728_Nanomaterials_Application_in_Orthodontics
  18. J. Fahad, A. Rida, A. K. Bhardwaj and A.K.Jaiswal, "Design optimization of optical communication systems using carbon nanotubes (CNTs) based on optical code division multiple access (OCDMA)," IJCSNS International Journal of Computer Science and Network Security, vol. 14, no. 12, pp. 102-112, 2014. URL: http://paper.ijcsns.org/07_book/201412/20141219.pdf
  19. W. Song and S. Ge, "Application of antimicrobial nanoparticles in dentistry," Molecules, vol. 24, pp. 1033-1048, 2019. DOI: 10.3390/molecules24061033. URL: https://www.researchgate.net/publication/331837926_Application_of_Antimicrobial_Nanoparticles_in_Dentistry
  20. Q. Peng, J. Liu, T. Zhang, T. X. Zhang, et al, "Digestive enzyme corona formed in the gastrointestinal tract and its impact on epithelial cell uptake of nanoparticles". Biomacromolecules, vol. 20, pp. 1789-1797, 2019. DOI: 10.1021/acs.biomac.9b00175. URL: https://pubmed.ncbi.nlm.nih.gov/30893550/
  21. N. Raura, A. Garg and A. Arora, "Nanoparticle technology and its implications in endodontics: a review," Biomaterials Research, vol. 24, pp. 21-55, 2020. DOI: 10.1186/s40824-020-00198-z. URL: https://biomaterialsres.biomedcentral.com/articles/10.1186/s40824-020-00198-z
  22. M. S. Alenazy, H. A. Mosadomi, S. Al-Nazhan and M. R. Rayyan, "Clinical considerations of nanobiomaterials in endodontics: A systematic review," Saudi endodontic journal, vol. 8, pp. 163-169, 2018. DOI: 10.4103/sej.sej_67_16. URL: https://www.researchgate.net/publication/326977008_Clinical_considerations_of_nanobiomaterials_in_endodontics_A_systematic_review
  23. D. S. D. Pathak "Advances in pulp capping materials: a review," IOSR Journal of dental and medical sciences, vol. 16, pp. 31-37, 2017. DOI: 10.9790/0853-1602073137. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939574/
  24. R. S. Al-Hamdan, B. Almutairi, H. F. Kattan, N. A. Alsuwailem, et al, "Influence of hydroxyapatite nanospheres in dentin adhesive on the dentin bond integrity and degree of conversion: A scanning electron microscopy (SEM), raman, fourier transform-infrared (FTIR), and microtensile study," Polymers, vol. 12, pp. 2948-2963, 2020. DOI: 10.3390/polym12122948. URL: https://www.mdpi.com/2073-4360/12/12/2948
  25. K. Herman, M. Wujczyk, M. Dobrzynski, D. Diakowska, et al, "In vitro assessment of long-term fluoride ion release from nanofluorapatite," Materials, vol. 14, pp. 3747-3761, 2021. DOI: 10.3390/ma14133747. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269907/
  26. B. Wiatrak, P. Sobierajska, M. Szandruk-Bender, P. Jawien, et al, "Nanohydroxyapatite as a biomaterial for peripheral nerve regeneration after mechanical damage - In vitro study," International Journal of Molecular Science, vol. 22, pp. 4454-4470, 2021. DOI: 10.3390/ijms22094454. URL: https://pubmed.ncbi.nlm.nih.gov/33923239/
  27. W. Zakrzewski, M. Dobrzynski, Z. Rybak and M. Szymonowicz, "Selected nanomaterials' application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process," Nanomaterials, vol. 10, pp. 1216-1245, 2020. DOI: 10.3390/nano10061216. URL: https://www.researchgate.net/publication/342383456_Selected_Nanomaterials'_Application_Enhanced_with_the_Use_of_Stem_Cells_in_Acceleration_of_Alveolar_Bone_Regeneration_during_Augmentation_Process
  28. N. Pajares-Chamorro and X. Chatzistavrou, "Bioactive glass nanoparticles for tissue regeneration", ACS Omega, vol. 5, pp. 12716-12726, 2020. DOI: 10.1021/acsomega.0c00180. URL: https://pubmed.ncbi.nlm.nih.gov/32548455/
  29. G. Tulu, B. Kaya, E. Cetin and M. Kole, "Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms," Orthodonty, vol. 109, pp. 802-811, 2021. DOI: 10.1007/s10266-021-00601-8. URL: https://pubmed.ncbi.nlm.nih.gov/34047872/
  30. G. Moraes, C. Zambom and W. L. Siqueira, "Nanoparticles in dentistry: a comprehensive review," Pharmaceuticals, vol. 14, pp. 752-781, 2021. DOI: 10.3390/ph14080752. URL: https://pubmed.ncbi.nlm.nih.gov/34451849/
  31. V. Vishwanath and H. Rao, "Gutta-percha in endodontics - a comprehensive review of material science", Journal of conservative dentistry: JCDI, vol. 22, pp. 216-222, 2019. DOI: 10.4103/JCD.JCD_420_18. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632621/
  32. H. Moradpoor, S. Mohseno, H. Mozaffari, R. Sharifi, et al, "An overview of recent progress in dental applications of zinc oxide nanoparticles," RSC Advances, vol. 11, pp. 21189-21206, 2021. DOI: 10.1039/D0RA10789A. URL: https://pubs.rsc.org/en/content/articlelanding/2021/ra/d0ra10789a
  33. O. Baru, A. Nutu, C. Braicu, C. Cismaru, et al, "Angiogenesis in regenerative dentistry: are we far enough for therapy," International Journal of Molecular Sciences, vol. 22, pp. 929-948, 2021. DOI: 10.3390/ijms22020929. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832295/
  34. H. Jing, X. He and J.Zheng, "Exosomes and regenerative medicine: state of the art and perspectives," Translational Research, vol. 196, pp. 1-16, 2018. DOI: 10.1016/j.trsl.2018.01.005. URL: https://www.researchgate.net/publication/322844713_Exoso mes_and_regenerative_medicine_State_of_the_art_and_perspectives
  35. X. Wu, S. Ding, K. Lin and J. Su, "A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration", Journal of Materials Chemistry B, vol. 5, pp. 3084-3102, 2017. DOI: 10.1039/C6TB03067J. URL: https://www.researchgate.net/publication/314161119_A_Review_on_the_Biocompatibility_and_Potential_Applications_of_Graphene_in_Inducing_Cell_Differentiation_and_Tissue_Regeneration
  36. M. Toledano-Osorio, E. Osorio, F. S. Aguilera, A. Luis Medina-Castillo, et al, "Improved reactive nanoparticles to treat dentin hypersensitivity," Acta Biomaterials, vol. 72, pp. 371-380, 2018. DOI: 10.1016/j.actbio.2018.03.033. URL: https://pubmed.ncbi.nlm.nih.gov/29581027/
  37. Y. Zhang, K. Gulati, Z. Li and P. Di, "Dental implant nano-engineering: advances, limitations and future directions", Nanomaterials, vol. 11, no. 10, pp. 2489-2515, 2021. DOI: 10.3390/nano11102489. URL: https://www.mdpi.com/2079-4991/11/10/2489
  38. K. H. Saw Hla, Y. Choi, J. S. Park, "Obstacle avoidance algorithm for collective movement in nanorobots," IJCSNS International Journal of Computer Science and Network Security, vol. 8, no. 11, pp. 302-309, 2008. URL: http://paper.ijcsns.org/07_book/200811/20081143.pdf