• Title/Summary/Keyword: Orthogonal series

Search Result 103, Processing Time 0.025 seconds

Pilot-symbol-aided channel estimation for the polyphae filter-based OFDM transmission system (다상 필터 기반 OFDM 전송 시스템을 위한 파일럿 채널 추정 기법)

  • Heo, Jin;Yoo, Kyung-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2610-2612
    • /
    • 2004
  • The polyphase filter-based orthogonal frequency division multiplexing (PF-OFDM) is proposed in [1]. It provides more efficient data transmission mechanism than the classical OFDM method. However, the channel estimation mechanism in the classical OFDM system such as the cyclic prefix can not be applied straightforwardly, since the received signal contains unpredictable terms. Therefore, the PF-OFDM system requires a complicated channel estimation scheme when it works on the multipath fading communication channel. In this paper, we proposed a pilot-symbol aided channel estimation algorithm suitable for the PF-OFDM system which efficiently deals with the unpredictable terms and verified its performance through a series of computer simulations.

  • PDF

q-SOBOLEV ORTHOGONALITY OF THE q-LAGUERRE POLYNOMIALS {Ln(-N)(·q)}n=0 FOR POSITIVE INTEGERS N

  • Moreno, Samuel G.;Garcia-Caballe, Esther M.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.913-926
    • /
    • 2011
  • The family of q-Laguerre polynomials $\{L_n^{(\alpha)}({\cdot};q)\}_{n=0}^{\infty}$ is usually defined for 0 < q < 1 and ${\alpha}$ > -1. We extend this family to a new one in which arbitrary complex values of the parameter ${\alpha}$ are allowed. These so-called generalized q-Laguerre polynomials fulfil the same three term recurrence relation as the original ones, but when the parameter ${\alpha}$ is a negative integer, no orthogonality property can be deduced from Favard's theorem. In this work we introduce non-standard inner products involving q-derivatives with respect to which the generalized q-Laguerre polynomials $\{L_n^{(-N)}({\cdot};q)\}_{n=0}^{\infty}$, for positive integers N, become orthogonal.

Vibration Analysis and Critical Speeds of Rotating Polar Orthotropic Disks, Part I : Formulation and Solution Method (극직교 이방성 회전원판의 진동해석 및 임계속도 I : 정식화 및 해법)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.169-175
    • /
    • 2006
  • Rotating annular disks are widely used in data storage devices such as CDs, DVDs(digital versatile disks), and HDs(hard disks). Higher data transfer rate in data storage disks could not be achieved by polycarbonate disks in the present market. The problem can be solved by applying the fiber-reinforce composite materials to the disks. In this paper, an application of composite materials to rotating disks is proposed to increase the critical speed. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating composite disks by the Galerkin method. The orthogonal functions are used in series solution. A companion paper(Part II) presents and discusses the numerical results of vibration analysis and critical speed for rotating polar orthotropic disk using the formulation and solution method given in this paper (Part I).

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup Neutron Diffusion Equation

  • Kim, Hyun-Dae-;Oh, Se-Kee
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.99-102
    • /
    • 1993
  • A consistent general order nodal method for solving the three-dimensional neutron diffusion equation in (x-y-z) geometry has been derived by using a weighted integral technique and expanding the spatial variable by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes fewer unknown variables in the schemes for iterative-convergence solution than other nodal methods listed in the literatures, and because the method utilizes the analytic solutions of the transverse-integrated one dimensional equations and a consistent approximation for a given spatial variable through all the solution procedures, which renders the use of an approximation for the transverse leakages no longer necessary, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased.

  • PDF

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Development of 3-axis Fine Positioning Stage: Part 1. Analysis and Design (초정밀 3축 이송 스테이지의 개발: 1. 해석 및 설계)

  • 강중옥;서문훈;한창수;홍성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.147-154
    • /
    • 2004
  • This paper presents a procedure for analysis and design of a fine positioning stage, which has many applications in industries for machine tools, semiconductor, LCD and so forth. The stage considered here is based on a single module with 3 axes which is composed of flexures hinges, piezoelectric actuators and their peripherals. Through a series of analysis, the structural analysis model is simplified as a rigid body(the moving part) and springs(the flexures hinges). An experimental design procedure is applied to determine the dimension of flexures hinges. A sensitivity analysis on the notch positions is also performed to obtain a guideline of fabrication accuracy for the stage. An actual fine stage is made and verified through an experiment on the dynamic characteristics.

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup, Static Neutron Diffusion Equation

  • Kim, H.D.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.34-39
    • /
    • 1996
  • A consistent general order nodal method for solving the 3-D neutron diffusion equation in (x-y-z) geometry has ben derived by using a weighted integral technique and expanding the spatial variables by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes the analytic solutions of the transverse-integrated quasi -one dimensional equations and a consistent expansion for the spatial variables so that it renders the use of an approximation for the transverse leakages no necessary. Thus, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased since the equation set is consistent mathematically.

  • PDF

NUMERICAL COUPLING OF TWO SCALAR CONSERVATION LAWS BY A RKDG METHOD

  • OKHOVATI, NASRIN;IZADI, MOHAMMAD
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.211-236
    • /
    • 2019
  • This paper is devoted to the study and investigation of the Runge-Kutta discontinuous Galerkin method for a system of differential equations consisting of two hyperbolic conservation laws. The numerical coupling flux which is used at a given interface (x = 0) is the upwind flux. Moreover, in the linear case, we derive optimal convergence rates in the $L_2$-norm, showing an error estimate of order ${\mathcal{O}}(h^{k+1})$ in domains where the exact solution is smooth; here h is the mesh width and k is the degree of the (orthogonal Legendre) polynomial functions spanning the finite element subspace. The underlying temporal discretization scheme in time is the third-order total variation diminishing Runge-Kutta scheme. We justify the advantages of the Runge-Kutta discontinuous Galerkin method in a series of numerical examples.

A Study on the variable points IFFT/FFT processor (재구성 가능한 가변 포인트 IFFT/FFT 프로세서 설계에 관한 연구)

  • Choi Won-Chul;Goo Jeon-Hyoung;Lee Hyun;Oh Hyun-Seo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.61-68
    • /
    • 2004
  • Wireless mobile communication systems request high speed mobility and high speed data transmission capability. In order to meet the requirements, OFDM(Orthogonal Frequency Division Multiplex) is mainly adopted in the physical layer of the wireless systems. In commercial wireless mobile systems, IEEE802.(11a, 16e, etc) series seem to be used as the modulation method. For supporting multiple air-interfaces in a wireless mobile system, different kinds of OFDM based modulation methods should be supported in one modem chip. It requires a variable point IFFT/FFT or reconfigurable IFFT/FFT processor. In this paper, we propose the design method of a reconfigurable IFFT/FFT processor. In addition, it is shown that a reconfigurable IFFT/FFT processor can he implemented by using the proposed method.

Interannual Variability of Sea Water Temperatures in the Southern Waters of the Korean East Sea (한국 동남해역의 장주기 수온변동)

  • Ro, Young Jae
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 1989
  • This study analyzes the interannual periodicity by using the statistical techniques of probability, spectral analysis, empirical orthogonal function analysis (EOF), and coherency analysis. The data base for this study is the time series of 1971-1985 temperature, salinity in the southern waters of the East Sea, 1960-1986 mean sea level at Pusan and Izuhara, and 1960-1986 sea level atmospheric pressure at Pusan. The appearances of anomalous temperatures higher and lower than 15-year mean monthly average with one standard deviation are about 30% of total data. The significant interannual period for temperature, salinity and sea level fluctuation is 36.6, and 23.3 months. The empirical orthogonal function analyses show that the 1st mode of the EOFs is responsible for more than 90% of total variance of the surface temperature variations, while in near-bottom waters, the relative importance of the higher EOF modes is much greater explaining more than 30% of total variance. The coherency between normalized temperatures and salinities is significant at the interannual period of 36.6 and 21.3 months.

  • PDF