• Title/Summary/Keyword: Orthogonal robot

Search Result 32, Processing Time 0.03 seconds

Optimal Design of Robot-Arm using Design of Experiments (실험 계획법을 이용한 로봇 암부위 최적설계)

  • Chung W.J.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.395-396
    • /
    • 2006
  • This paper presents the optimal design of Robot-Arm part use Design of Experiment(DOE). The DOE(Design of Experiment)was conducted to find out main effect factors for design of Robot-Arm part. In this design of Robot-Arm, 5 control factors include numbers of 4 level are selected and we make out L16 orthogonal array. Using this orthogonal array, find out optimal value and main effect factors of object function for design of Robot-Arm part by 16 times of test. We evidence this optimal value by using CATIA V5 Analysis.

  • PDF

A Selection of the Optimal Working Condition for an Outer-hull Preprocessing Robot Using a Taguchi Method (다구찌 방법을 이용한 선체 외판 전처리 로봇의 최적 작업 조건 선정)

  • Chung Won-Jee;Kim Ki-Jung;Kim Hyo-Gon;Kim Jung-Hyun;Kim Ho-Kyung;Lee Hun-Dong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.69-73
    • /
    • 2006
  • This paper present the optimal cleaning condition of the out-hull preprocessing robot by Taguchi method in design of experiments. A $L_8(2^4)$ orthogonal array is adopted to study the effect of adjustment parameters. The adjustment parameters consist of robot speed, motor torque, motor speed and tool angle. And the quality feature is selected as surface roughness of sheet metal. Taguchi analysis is performed in order to evaluate the effect of adjustment parameters of the quality feature of cleaning process by $Minitab^{(R)}$.

Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body (탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화)

  • Choi, JaeNeung;Lee, Sangho;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.

A development of quadruped walking robot with 3-D orthogonal legs using pantograph mechanism (팬터그라프 기구를 이용한 3차원 수직 직교형 다리 기구를 가진 4각 보행로봇의 개발)

  • 김인준;정경민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1593-1596
    • /
    • 1997
  • Because the leg mechanism of walking roblt affect on the mobility and energy efficiency, we focus on the design of new leg mechanism based on the previous leg mechanisms. We mention the deficiency of the previous leg mechanisms and propose a new leg mechanism that consists of a 2-d.o.f pantograph mechanism and a vertical linear actuator. The pantograph mechanism is attached to the horizontal plane of the body and the verical linear actuator is vertical to that plane. In order to design a quadruped walking robot, we consider the kinematics of the 2-d.o.f pantograph mechanism and the arrangement of twol linear motion guides that drive the pantograph mechanism.

  • PDF

Effect of 2nd Axis Linear Motion Guide on Mechanical Performance of Robot in 2-Axis Cartesian Coordinate Robot (2축 직교좌표 로봇에서 2축 직선 운동 가이드가 로봇의 기계적 성능에 미치는 영향)

  • Lee, Jong Shin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.95-103
    • /
    • 2011
  • Robots in various types carry and assemble parts through repeatedly and accurately moving to stored locations by combining linear motions. And, linear systems are used in orthogonal axes of robots and driven via ball screws, such as 2-axis cartesian coordinate robot in this paper. This paper presents the effect of the linear motion guide that is used in $2^{nd}$ axis in 2-axis cartesian coordinate robot. Some simulation results show that the linear motion guide influence greatly in robot performance such as the nominal life of linear guide. When use LM guide that have capacity near in $2^{nd}$ axis, this paper show that the nominal life on LM block of $1^{st}$ axis increases 37.4% and that the specification of $2^{nd}$ axis LM guide influences greatly the nominal life of $1^{st}$ axis LM block.

2-Axis Cartesian Coordinate Robot Optimization for Air Hockey Game (에어 하키 게임을 위한 2축 직교 좌표 로봇 최적화)

  • Kim, Hui-yeon;Lee, Won-jae;Yu, Yun Seop;Kim, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.436-438
    • /
    • 2019
  • Air hockey robots are machine vision systems that allow users to play hockey balls through the camera. The position detection of the hockey ball is realized by using the color information of the ball using OpenCV library. It senses the position of the hockey ball, predicts its trajectory, and sends the result to the ARM Cortex-M board. The ARM Cortex-M board controls a 2- Axis Cartesian Coordinate Robot to run an air hockey game. Depending on the strategy of the air hockey robot, it can operate in defensive, offensive, defensive and offensive mode. In this paper, we describe a vision system development and trajectory prediction system and propose a new method to control a biaxial orthogonal robot in an air hockey game.

  • PDF

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

Redundant Robot Control by Neural Optimization Networks (신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

Feasibility test for dynamic gait of quadruped walking robot (4각 보행로봇의 동적 걸음새 평가)

  • 김종년;홍형주;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1455-1463
    • /
    • 1990
  • In this study the feasibility of a dynamic gait for a given quadruped walking robot is investigated through a computer simulation of the walking with certain drivings of the actuators. Two planar inverted pendulums are used to represent the dynamic model of the leg of the walking robot. It's gait motion is assumed to be periodic and symmetric between left and right sides only with half cycle delay. The dynamics of the walking robot is simplified by introducing two virtual legs to produce two planar inverted pendulums in two orthogonal planes and on the basis that certain legs in pair act as one. The feasibility of the dynamic gait motion is established from the following two necessary conditions:(1) The position and velocity of a foot must satisfy the stroke and velocity requirements.(2) The gait motion should be periodic without falling down. The gait feasibility test was applied to a walking robot design showing the specific acceptable speed range of the robot in trot. Also it showed that the higher body height may produce the faster trot gait.