• Title/Summary/Keyword: Orthodontic microimplant

Search Result 14, Processing Time 0.021 seconds

Effect of surface anodization on stability of orthodontic microimplant

  • Karmarker, Sanket;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.42 no.1
    • /
    • pp.4-10
    • /
    • 2012
  • Objective: To determine the effect of surface anodization on the interfacial strength between an orthodontic microimplant (MI) and the rabbit tibial bone, particularly in the initial phase aft er placement. Methods: A total of 36 MIs were driven into the tibias of 3 mature rabbits by using the self-drilling method and then removed aft er 6 weeks. Half the MIs were as-machined (n = 18; machined group), while the remaining had anodized surfaces (n = 18; anodized group). The peak insertion torque (PIT) and the peak removal torque (PRT) values were measured for the 2 groups of MIs. These values were then used to calculate the interfacial shear strength between the MI and cortical bone. Results: There were no statistical differences in terms of PIT between the 2 groups. However, mean PRT was significantly greater for the anodized implants ($3.79{\pm}1.39$ Ncm) than for the machined ones ($2.05{\pm}1.07$ Ncm) (p < 0.01). The interfacial strengths, converted from PRT, were calculated at 10.6 MPa and 5.74 MPa for the anodized and machined group implants, respectively. Conclusions: Anodization of orthodontic MIs may enhance their early-phase retention capability, thereby ensuring a more reliable source of absolute anchorage.

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant (치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석)

  • Yu, Won-Jae;Kim, Mi-Ryoung;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.6-15
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

Microimplant mandibular advancement (MiMA) therapy for the treatment of snoring and obstructive sleep apnea (OSA) (코골이 및 수면 무호흡 치료를 위한 마이크로 임프란트를 이용한 하악골 전진술)

  • Ngiam, Joachim;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.115-126
    • /
    • 2010
  • This case report describes the treatment of a 66 year old adult patient with a diagnosis of severe obstructive sleep apnea who was intolerant of nasal continuous positive airway pressure (nCPAP) treatment and oral appliance therapy. An alternative treatment of snoring and obstructive sleep apnea (OSA) with 2 orthodontic microimplants anchored to the mandible providing skeletal anchorage for mandibular advancement was implemented. After a 2 week healing period, a custom designed facemask provided extraoral anchorage to which the microimplants were connected to for titratable mandibular advancement. Microimplant Mandibular Advancement (MiMA) therapy resulted in resolution of the symptoms of severe OSA with a reduction of the apnea-hypopnea index (AHI), snoring and OSA symptoms.

Finite element analysis of cortical bone strain induced by self-drilling placement of orthodontic microimplant (Self-drilling 방식의 마이크로임플란트 식립에 의해 발생하는 피질골 스트레인의 유한요소해석)

  • Park, Jin-Seo;Yu, Won-Jae;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion in a self-drilling manner. Methods: A 3D finite element method was used to simulate the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone. The shape and dimension of thread groove in the center of the cortical bone produced by the cutting flute at the apical of the microimplant was obtained from animal test using rabbit tibias. A total of 3,600 analysis steps was used to calculate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, were observed in the peri-implant bone along the whole length of the microimplant. Level of strains in the vicinity of either the screw tip or the valley part were similar. Conclusions: Bone strains from a microimplant insertion in a self-drilling manner might have a negative impact on the physiological remodeling of cortical bone.

Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis (3차원 유한요소법을 이용한 교정용 마이크로임플란트 식립 시의 피질골 스트레인 해석)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.228-239
    • /
    • 2008
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion. Methods: A 3D finite element method was used to model the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) Into 1 mm thick cortical bone with a pre-drilled hole of 0.9 mm in diameter. A total of 1,800 analysis steps was used to simulate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, was observed in the bone along the whole length of the microimplant. At the bone in the vicinity of the screw tip, strains of higher than 100% was recorded. The insertion torque was calculated at approximately 1.2 Ncm which was slightly lower than those measured from the animal experiment using rabbit tibias. Conclusions: The insertion process of a microimplant was successfully simulated using the 3D finite element method which showed that bone strains from a microimplant insertion might have a negative impact on physiological remodeling of bone.

Optimization of orthodontic microimplant thread design (교정용 마이크로 임플란트의 나사산 디자인 최적화)

  • Kim, Kwang-Duk;Yu, Won-Jae;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.25-35
    • /
    • 2011
  • Objective: The purpose of this study was to optimize the thread pattern of orthodontic microimplants. Methods: In search of an optimal thread for orthodontic microimplants, an objective function stability quotient (SQ) was built and solved which will help increase the stability and torsional strength of microimplants while reducing the bone damage during insertion. Selecting the AbsoAnchor SH1312-7 microimplant (Dentos Inc., Daegu, Korea) as a control, and using the thread height (h) and pitch (p) as design parameters, new thread designs with optimal combination of hand p combination were developed. Design soundness of the new threads were examined through insertion strain analyses using 3D finite element simulation, torque test, and clinical test. Results: Solving the function SQ, four new models with optimized thread designs were developed (h200p6, h225p7, h250p8, and h275p8). Finite element analysis has shown that these new designs may cause less bone damage during insertion. The torsional strength of two models h200p6 and h225p7 were significantly higher than the control. On the other hand, clinical test of models h200p6 and h250p8 had similar success rates when compared to the control. Conclusion: Overall, the new thread designs exhibited better performance than the control which indicated that the optimization methodology may be a useful tool when designing orthodontic microimplant threads.

Influence of late removal after treatment on the removal torque of microimplants

  • Kim, Ho-Jin;Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.52 no.3
    • /
    • pp.201-209
    • /
    • 2022
  • Objective: To compare the removal torque of microimplants upon post-use removal and post-retention removal and to assess the influencing factors. Methods: The sample group included 241 patients (age, 30.25 ± 12.2 years) with 568 microimplants. They were divided into the post-use (microimplants removed immediately after use or treatment) and post-retention (microimplants removed during the retention period) removal groups. The removal torque in both groups was assessed according to sex, age, placement site and method, and microimplant size. Pearson correlation and multiple linear regression analyses were performed for evaluating variables influencing the removal torque. Results: The mean period of total in-bone stay of microimplants in the post-retention removal group (1,237 days) was approximately two times longer than that in the post-use removal group (656.28 days). The removal torques in the post-retention removal group (range, 4-5 N cm) were also higher than those in the post-use removal group. The mandible and pre-drilling groups demonstrated higher placement and removal torques than did the maxilla and no-drilling groups, respectively. In the no-drilling post-use removal group, the placement torque and microimplant length positively correlated with the removal torque. In the post-retention removal group, unloading in-bone stay period and microimplant diameter positively correlated with the removal torque in the no-drilling and pre-drilling methods, respectively. Conclusions: The removal torques differed according to the orthodontic loading and removal time of microimplants. With prolonged retention of microimplants inserted using the no-drilling method, the removal torque was clinically acceptable and positively correlated with the unloading in-bone stay period.

Pattern of microimplant displacement during maxillary skeletal expander treatment: A cone-beam computed tomography study

  • Ney Paredes;Ausama Gargoum;Ramon Dominguez-Mompell;Ozge Colak;Joseph Bui;Tam Duong;Maya Giannetti;Fernanda Silva;Kendra Brooks;Won Moon
    • The korean journal of orthodontics
    • /
    • v.53 no.5
    • /
    • pp.289-297
    • /
    • 2023
  • Objective: To analyze the microimplant (MI) displacement pattern on treatment with a maxillary skeletal expander (MSE) using cone-beam computed tomography (CBCT). Methods: Thirty-nine participants (12 males and 27 females; mean age, 18.2 ± 4.2 years) were treated successfully with the MSE II appliance. Their pre- and post-expansion CBCT data were superimposed. The pre- and post-expansion anterior and posterior inter-MI angles, neck and apical inter-MI distance, plate angle, palatal bone thickness at the MI positions, and suture opening at the MI positions were measured and compared. Results: The jackscrew plate was slightly bent in both anterior and posterior areas. There was no significant difference in the extent of suture opening between the anterior and posterior MIs (P > 0.05). The posterior MI to hemiplate line was greater than that anteriorly (P < 0.05). The apical distance between the posterior MIs was greater than that anteriorly (P < 0.05). The palatal thickness at the anterior MIs was significantly greater than that posteriorly (P > 0.01). Conclusions: In the coronal plane, the angulation between the anterior MIs in relation to the jackscrew plate was greater than that between the posterior MIs owing to the differential palatal bone thickness.

Evaluation of factors influencing the success rate of orthodontic microimplants using panoramic radiographs

  • Park, Jae Hyun;Chae, Jong-Moon;Bay, R. Curtis;Kim, Mi-Jung;Lee, Keun-Young;Chang, Na-Young
    • The korean journal of orthodontics
    • /
    • v.48 no.1
    • /
    • pp.30-38
    • /
    • 2018
  • Objective: The purpose of this study was to investigate factors influencing the success rate of orthodontic microimplants (OMIs) using panoramic radiographs (PRs). Methods: We examined 160 OMIs inserted bilaterally in the maxillary buccal alveolar bone between the second premolars and first molars of 80 patients (51 women, 29 men; mean age, $18.0{\pm}6.1years$) undergoing treatment for malocclusion. The angulation and position of OMIs, as well as other parameters, were measured on PRs. The correlation between each measurement and the OMI success rate was then evaluated. Results: The overall success rate was 85.0% (136/160). Age was found to be a significant predictor of implant success (p < 0.05), while sex, side of placement, extraction, and position of the OMI tip were not significant predictors (p > 0.05). The highest success rate was observed for OMIs with tips positioned on the interradicular midline (IRML; central position). Univariate analyses revealed that the OMI success rate significantly increased with an increase in the OMI length and placement height of OMI (p = 0.001). However, in simultaneous analyses, only length remained significant (p = 0.027). Root proximity, distance between the OMI tip and IRML, interradicular distance, alveolar crest width, distance between the OMI head and IRML, and placement angle were not factors for success. Correlations between the placement angle and all other measurements except root proximity were statistically significant (p < 0.05). Conclusions: Our findings suggest that OMIs positioned more apically with a lesser angulation, as observed on PRs, exhibit high success rates.