Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis

3차원 유한요소법을 이용한 교정용 마이크로임플란트 식립 시의 피질골 스트레인 해석

  • Nam, Ok-Hyun (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kyung, Hee-Moon (Department of Orthodontics, School of Dentistry, Kyungpook National University)
  • 남옥현 (경북대학교 치의학전문대학원 교정학교실) ;
  • 유원재 (경북대학교 치의학전문대학원 교정학교실) ;
  • 경희문 (경북대학교 치의학전문대학원 교정학교실)
  • Published : 2008.08.30

Abstract

Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion. Methods: A 3D finite element method was used to model the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) Into 1 mm thick cortical bone with a pre-drilled hole of 0.9 mm in diameter. A total of 1,800 analysis steps was used to simulate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, was observed in the bone along the whole length of the microimplant. At the bone in the vicinity of the screw tip, strains of higher than 100% was recorded. The insertion torque was calculated at approximately 1.2 Ncm which was slightly lower than those measured from the animal experiment using rabbit tibias. Conclusions: The insertion process of a microimplant was successfully simulated using the 3D finite element method which showed that bone strains from a microimplant insertion might have a negative impact on physiological remodeling of bone.

식립 후 힘의 부하가 조기에 이루어지는 마이크로임플란트의 경우 식립 시의 골응력 혹은 스트레인의 관리가 그 안정성에 있어 중요한 요인으로 작용할 수 있다. 이에 본 연구에서는 3D 유한요소법을 사용하여 교정용 마이크로임플란트 식립 시 피질골에 발생하는 응력(스트레인)을 해석하였다. 0.9 mm 직경으로 미리 드릴링한 1mm 두께 피질골에 마이크로임플란트(AbsoAnchor SH1312-7, Dentos, Daegu, Korea)가 식립되는 전체 과정(10회전, 식립 깊이 5 mm)의 모사를 위해 총 1,800 step의 유한요소해석을 실시하였다. 식립 진행과 더불어 생기는 나사산 주위 피질골의 기하학적 형상변화를 유한요소해석에 반영하기 위하여 지속적인 remesh를 실행하였으며, 빠른 수렴을 위해 마이크로임플란트는 강체로, 피질골은 강소성체로 모델링하였다. 해석 결과, 마이크로임플란트 식립 시 피질골에 발생되는 스트레인은 임플란트 주위골 전체에서 정상적인 골개형을 위한 한계치로 보고되고 있는 $4,000\;{\mu}$-strain을 상회하였고, 나사산 첨부 인접골에서는 스트레인이 100% 이상에 달하였다. 계산된 피질골 식립토오크는 약 1.2 Ncm 정도로 가토 경골에 동일 모델의 마이크로임플란트을 식립하며 측정한 값에 약간 미달하였으나 근접한 수치를 보였다. 본 연구를 통해, 마이크로임플란트의 식립과정을 3D 유한요소법으로 재현할 수 있음을 확인하였고, 또한 마이크로임플란트 식립에 의해 피질골에 발생하는 스트레인 크기는 생리적인 골개형을 저해할 수 있는 수준임을 확인할 수 있었다.

Keywords

References

  1. Maniatopoulos C, Pilliar RM, Smith DC. Threaded versus porous- surfaced designs for implant stabilization in bone-endodontic implant model. J Biomed Mater Res 1986;20:1309-33 https://doi.org/10.1002/jbm.820200907
  2. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 1998;43:192-203 https://doi.org/10.1002/(SICI)1097-4636(199822)43:2<192::AID-JBM14>3.0.CO;2-K
  3. Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 1986;208:108-13
  4. Frost HM. Wolff's law and bone's structural adaptation to mechanical usage: an overview for clinicians. Angle Orthod 1994;64:175-88
  5. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101
  6. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985;37:411-7 https://doi.org/10.1007/BF02553711
  7. Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Vander Sorten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 2001; 12:207-18 https://doi.org/10.1034/j.1600-0501.2001.012003207.x
  8. Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin Oral Implants Res 2005;16:480-5 https://doi.org/10.1111/j.1600-0501.2005.01130.x
  9. Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite-element analysis. J Maxillofac Surg 2001;29:100-5
  10. Meyer U, Joos U, Mythili J, Stamm T, Hohoff A, Fillies T, et al. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 2004;25:1959-67 https://doi.org/10.1016/j.biomaterials.2003.08.070
  11. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68
  12. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005;16:486-94 https://doi.org/10.1111/j.1600-0501.2005.01132.x
  13. Clelland NL, Gilat A. The effect of abutment angulation on stress transfer for an implant. J Prosthodont 1992;1:24-8. https://doi.org/10.1111/j.1532-849X.1992.tb00422.x
  14. Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants 2006;21:195-202
  15. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1997;23: 104-11
  16. Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J 2005;24:219-24 https://doi.org/10.4012/dmj.24.219
  17. Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005;93:227-34 https://doi.org/10.1016/j.prosdent.2004.12.019
  18. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58 https://doi.org/10.1016/S0021-9290(03)00164-7
  19. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143-52 https://doi.org/10.1034/j.1600-0501.1996.070208.x
  20. Dalstra M, Cattaneo PM, Melson B. Load transfer of miniscrews for orthodontic anchorage. Orthod 2004;1:53-62
  21. De Smet E, Jaecques SV, Jansen JJ, Walboomers F, Vander Sloten J, Naert IE. Effect of constant strain rate, composed of varying amplitude and frequency, of early loading on peri-implant bone (re)modelling. J Clin Periodontol 2007;34:618-24 https://doi.org/10.1111/j.1600-051X.2007.01082.x
  22. Sugiura T, Horiuchi K, Sugimura M, Tsutsumi S. Evaluation of threshold stress for bone resorption around screws based on in vivo strain measurement of miniplate. J Musculoskelet Neuronal Interact 2000;1:165-70
  23. Yu WJ, Kyung HM. A quantitative evaluation of cortical bone stresses influenced by diameter of orthodontic micro-implant. J Korean Res Soc Dent Mater 2007;34:75-87
  24. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 2006;17:109-14 https://doi.org/10.1111/j.1600-0501.2005.01211.x
  25. Cha JY, Yoon TM, Hwang CJ. Insertion and removal torques according to orthodontic mini-screw design. Korean J Orthod 2008;38:5-12 https://doi.org/10.4041/kjod.2008.38.1.5