DOI QR코드

DOI QR Code

Finite element analysis of cortical bone strain induced by self-drilling placement of orthodontic microimplant

Self-drilling 방식의 마이크로임플란트 식립에 의해 발생하는 피질골 스트레인의 유한요소해석

  • Park, Jin-Seo (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kyung, Hee-Moon (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kwon, Oh-Won (Department of Orthodontics, School of Dentistry, Kyungpook National University)
  • 박진서 (경북대학교 치의학전문대학원 교정학교실) ;
  • 유원재 (경북대학교 치의학전문대학원 교정학교실) ;
  • 경희문 (경북대학교 치의학전문대학원 교정학교실) ;
  • 권오원 (경북대학교 치의학전문대학원 교정학교실)
  • Received : 2009.01.29
  • Accepted : 2009.07.04
  • Published : 2009.08.30

Abstract

Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion in a self-drilling manner. Methods: A 3D finite element method was used to simulate the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone. The shape and dimension of thread groove in the center of the cortical bone produced by the cutting flute at the apical of the microimplant was obtained from animal test using rabbit tibias. A total of 3,600 analysis steps was used to calculate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, were observed in the peri-implant bone along the whole length of the microimplant. Level of strains in the vicinity of either the screw tip or the valley part were similar. Conclusions: Bone strains from a microimplant insertion in a self-drilling manner might have a negative impact on the physiological remodeling of cortical bone.

골밀도가 높고 두꺼운 피질골에 마이크로임플란트를 self-drilling 방식으로 식립하는 경우 과도한 수준의 골부하 (bone loading)가 발생할 위험이 있으며 이는 인접골의 정상적인 골개형(bone remodeling)에 장애를 초래할 수 있다. 이에, 본 연구에서는 유한요소해석으로 두께 1.0 mm의 피질골에 Absoanchor SH1312-7 마이크로임플란트((주)덴토스, 대구, 대한민국)가 self-drilling 방식으로 식립되는 과정(10회전, 식립깊이 5 mm)을 모사(simulation)하였으며 식립 단계별로 피질골에 발생되는 스트레인을 조사하였다. 식립중 마이크로임플란트 첨부의 절삭연(cutting flute)에 의한 골삭제로 생기는 나사길(threaded groove)의 치수를 얻기 위하여 가토 경골에 마이크로임플란트를 식립/제거한 후 Micro CT (Explore Locus RS, GE Healthcare, Ontario, Canada)를 이용하여 기하형상을 측정하였으며 이를 치밀골의 유한요소모델에 반영하였다. 해석결과, 치밀골에 발생되는 스트레인은 임플란트 식립깊이에 따라 증가하였고, 초기단계에서 나사산에 인접한 골에 국한되던 과부하 부위(스트레인이 4,000${\mu}$-strain을 상회하는 영역)가 식립깊이 증가에 따라 인접골 전체, 즉 나사산 인접부는 물론 골(valley) 부위에 접하는 모든 영역으로 확장되었다. 본 연구를 통해, self-drilling 방식으로 마이크로임플란트를 식립할 때 치밀골에 발생하는 스트레인 크기는 생리적인 골개형을 저해할 수 있는 수준임을 확인할 수 있었다.

Keywords

References

  1. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006;130:18-25 https://doi.org/10.1016/j.ajodo.2004.11.032
  2. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004;19:100-6
  3. Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 2006;67:162-74 https://doi.org/10.1007/s00056-006-0611-z
  4. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985;37:411-7 https://doi.org/10.1007/BF02553711
  5. Frost HM. Wolff's law and bone structural's adaptation to mechanical usage: an overview for clinicians. Angle Orthod 1994;64:175-88
  6. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101 https://doi.org/10.1002/ar.a.10119
  7. Sugiura T, Horiuchi K, Sugimura1 M, Tsutsumi S. Evaluation of threshold stress for bone resorption around screws based on in vivo strain measurement of miniplate. J Musculoskel Neuron Interact 2000;1:165-70
  8. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A Clinical and radiographic study in monkeys. Clin Oral Impl Res 1996;7:143-52 https://doi.org/10.1034/j.1600-0501.1996.070208.x
  9. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Impl 2003;18:357-68
  10. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Impl Res 2005;16:486-94 https://doi.org/10.1111/j.1600-0501.2005.01132.x
  11. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1997;23:104-11
  12. Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J 2005;24:219-24 https://doi.org/10.4012/dmj.24.219
  13. Cha JY, Yun TM, Hwang CJ. Insertion and removal torques according to orthodontic mini-screw design. Korean J Orthod 2008;38:5-12 https://doi.org/10.4041/kjod.2008.38.1.5
  14. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 2006;17:109-14 https://doi.org/10.1111/j.1600-0501.2005.01211.x
  15. Nam OH, Yu WJ, Kyung HM. Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis. Korean J Orthod 2008;38:228-39 https://doi.org/10.4041/kjod.2008.38.4.228
  16. Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite-element analysis. Clin Oral Impl Res 2001;12:648-57 https://doi.org/10.1034/j.1600-0501.2001.120614.x
  17. Meyer U, Joos U, Mythili J, Stamm, T, Hohoff A, Stratmann U, et al. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biometerials 2004;25:1959-67 https://doi.org/10.1016/j.biomaterials.2003.08.070
  18. Heidemann W, Gerlach KL, Gr$\ddot{o}$bel KH, K$\ddot{o}$llner HG. Drill Free Screws: a new formof osteosynthesis screw. J Craniomaxillofac Surg 1998;26:163-8 https://doi.org/10.1016/S1010-5182(98)80007-3
  19. Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2005;128:190-4 https://doi.org/10.1016/j.ajodo.2004.01.030
  20. Chen Y, Shin HI, Kyung HM. Biomechanical and histological comparison of self-drillingand self-tapping orthodontic microimplants in dogs. Am J Orthod Dentofacial Orthop 2008;133:44-50 https://doi.org/10.1016/j.ajodo.2007.01.023
  21. Heidemann W, Gerlach KL. Clinical applications of drill free screws in maxillofacial surgery. J Craniomaxillofac Surg 1999;27:252-5 https://doi.org/10.1016/S1010-5182(99)80037-7
  22. Park HS. Orthodontic treatment using micro-implant: clinical applications of micro-implant anchorage. 2nd ed. Seoul, Korea: Daehan Nare Pub Co; 2006. p. 18-9
  23. Sowden D, Schmitz JP. AO self-drilling and self-tapping screws in rat calvarial bone: an ultrastructual study of the implant interface. J Oral Maxillofac Surg 2002;60:294-9 https://doi.org/10.1053/joms.2002.30585
  24. Maniatopoulos C, Pilliar RM, Smith D. Threaded versus porous-surfaced designs for implant stabilization in bone-endodontic implant model. J Biomed Mater Res 1986;20:1309-33 https://doi.org/10.1002/jbm.820200907
  25. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of perimental literature. J Biomed Mater Res 1998;43:192-203 https://doi.org/10.1002/(SICI)1097-4636(199822)43:2<192::AID-JBM14>3.0.CO;2-K
  26. Pilliar RM, Lee GM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 1986;208:108-13

Cited by

  1. 교정용 마이크로 임플란트의 나사산 디자인 최적화 vol.41, pp.1, 2009, https://doi.org/10.4041/kjod.2011.41.1.25
  2. 표면처리가 교정용 미니 임플랜트의 식립수직력과 토크에 미치는 영향 vol.41, pp.4, 2009, https://doi.org/10.4041/kjod.2011.41.4.268
  3. Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length vol.41, pp.6, 2011, https://doi.org/10.4041/kjod.2011.41.6.423