• Title/Summary/Keyword: Orifice Injector

Search Result 99, Processing Time 0.03 seconds

Spray Characteristics of Single and Double Liquid Jets in Crossflow (주류유동에서 단일 및 이중 수직분사 분무특성)

  • Yoon, Hyun-Jin;Hong, Jung-Goo;Park, Cheol-Woo;Lee, Choong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.495-501
    • /
    • 2012
  • Spray characteristics of liquid jets in crossflow, which can be observed in the liquid jet injection system of a gas turbine or ramjet engine, were experimentally investigated. By measuring liquid jet penetration in the case of single orifice and double orifice injectors, the experimental formula for jet penetration was modified to consider penetration distances greater than that considered in a previous study. The changes in spray characteristics resulting from changes in the liquid jet and crossflow pressure, including SMD and jet disintegration, were carefully studied. Specifically, the jet penetration was measured for different injector shapes, and in the case of a double orifice injector, the penetration of the rear orifice jet was found to be greater by approximately 20% ($L_h$ = 4 mm) compared to that in the case of a single orifice injector because of the influence of the front orifice.

Modeling of Injector Orifice for the Flow Analysis in LOX Manifold of Liquid Rocket (액체로켓의 산화제 매니폴드 내 유동해석을 위한 분사공 모델링)

  • Kim, Hak-Jong;Byun, Yung-Hwan;Cho, Won-Kook;Seol, Woo-Seok;Na, Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • The flow in the LOX manifold of liquid rocket (KSR-III) has been analyzed using a CAE technique with an objective of modeling injector orifices in order to reduce the computational cost for the flow analysis without much losing the accuracy of capturing the flow physics. The numerical result shows that the flow just above the injector orifices is not uniformly distributed in terms of pressure and mass flow rate in case pre-distributors are not equipped inside the manifold. This non-uniformity of mass flux is attributed to the presence of large-scale flow patterns. Several boundary conditions which were designed to effectively replace the presence of injector orifices have been tested and it was found that a simple modeling can be possible by mimicking the actual shape of the orifices.

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.877-880
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.658-661
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Effects of Propellant Phases on Atmospheric Spray Characteristics of a Pintle Injector for Throttleable Rocket Engines (가변 추력용 핀틀 분사기에서 추진제 상에 따른 상압분무 특성)

  • Yu, Kijeong;Son, Min;Radhakrishnan, Kanmaniraja;Kim, Heuy Dong;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Atmospheric spray characteristics were experimentally compared between liquid-gas and liquid-liquid sprays of a pintle injector. In order to study spray characteristics, water and air were used as the simulants and the visualization technic was adopted. Spray images were acquired by using a backlight method by a high-resolution CMOS camera. As a result, when the pintle opening distance increased, liquid sheets became unstabled and fluttering droplets increased. In the liquid-gas case, the breakup performance increased as the pressure of gas injected from the annular orifice increased. In the liquid-liquid case, atomization efficiency decreased as the pressure of liquid injected from the annular orifice increased. Spray angles presented a similar trend between two cases. At the same momentum ratio, the spray angle of liquid-liquid case was lower than the angle of liquid-gas case.

Analysis of Behavior Characteristics of Common Rail System Injector for the Variations of Injector Parameters (커먼 레일 시스템 인젝터의 파라미터 변화에 따른 거동특성 해석)

  • Kim, Joong-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.499-508
    • /
    • 2009
  • This paper focuses on the modelling of common rail diesel injector using the AMESim code and shows the appropriateness of the developed model. For the developed injector model, simulations are carried out to analyze the behavior characteristics of the injector for the variations of injector model parameters such as orifice diameters, rail pressures, and energizing times. Simulation results show that the diameters of inlet and outlet orifices have close relation with injection quantity. Increment of rail pressure and energizing time provides increment of injection quantity, and simulated energizing time map shows injection characteristics of the common rail injector.

The Flow Characteristics of Fuel Droplets between the Twin Spray for 4-hole Gasoline Injectors (4공 가솔린 분사기의 2중 분무 사이에서 연료 액적들의 유동특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.484-495
    • /
    • 2003
  • This study investigates the flow characteristics of fuel droplets between twin spray for the 4-hole injector used a 4-valve gasoline engine. The injectors for this study were the three types of 4-hole gasoline injector in which orifice diameter was 0.24mm. The spray behavior of twin spray was investigated by means of visualization employed stroboscope. A PDPA system was employed to simultaneously measure the size and velocity of fuel droplets. The 3 dimensional mean velocities. droplet size distributions, SMD and joint probability density function of velocity and droplet size are analyzed at the center of the spray and the center region of twin spray. As a result, the configurations of injector exit such as orifice interval and length of outlet, are very important factors that affect the flow characteristics of fuel droplets at the center region of twin spray.

The Effects of Operating Conditions and Injector Geometry on the Spray Characteristics of Swirl Injectors (스월 인젝터의 작동조건 및 인젝터 형상에 따른 분무특성)

  • Kim, D.J.;Im, J.H.;Han, P.G.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • The flow characteristics of a swirl injector were investigated with the variation of the flow condition and geometric dimensions, such as orifice length for considering the viscous effect and tangential entry port area for considering the swirl intensity. The liquid film thickness strongly influencing on the formed drop size of the spray was measured using a new technique. The film thickness measurement technique proposed here, used the attenuation of fluorescence signal near the injector exit. The breakup length that is important for the flame location as well as the spray cone angle which influences on the ignition performance was measured using a backlit stroboscopic photography technique. From the experimental results, it is found that an increase in injection pressure decreased the film thickness and breakup length, and also enlarged the spray cone angle. A decrease in orifice length and tangential entry port area has a similar tendency of thinner film thickness, shorter breakup length and larger spray cone angle. In the present study, we proposed empirical models of the flow characteristics of the swirl injectors.

  • PDF

A study on spray characteristics of the triplet impinging stream type injector for liquid rocket (액체 로켓용 충돌형 Triplet 인젝터의 미립화 특성에 관한 연구)

  • Park, Sung-Young;Kim, Seon-Jin;Park, Seung-Woon;Kim, Yoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1005-1014
    • /
    • 1996
  • An experimental investigation has been carried out to examine the influence of injector design variables and operating conditions on the resultant drop size for triplet impinging streams injectors. The variables studied in this investigation are pressure drop, impinging angle, orifice length to diameter ratio, and impinging point distance. Droplet-size data are obtained using water as the propellant simulant by Malvern Particle Analyzer System. Drop size decreases with increasing impinging angle and pressure drop while other injector parameters remain constant at the same point. But it is found that there is no noticeable droplet-size change which results from change in orifice length to diameter ratio or impinging point distance within the investigated range.

Numerical Simulation of Orifice Injection Characteristics of High Temperature Aviation Fuel (고온 항공유의 오리피스 인젝터 분사특성 수치해석)

  • Sung-rok Hwang;Hyung Ju Lee
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.89-96
    • /
    • 2023
  • This study presents a numerical simulation investigating hydrodynamic characteristics of high-temperature hydrocarbon aviation fuel injected through a plain orifice injector. The analysis encompassed the temperature range up to the critical point, and the obtained results were compared with prior experimental observations. The analysis unveiled that the injector's exit pressure remains equivalent to the ambient pressure when the fuel injection temperature is below the boiling point. However, when the fuel temperature surpasses the boiling point, the exit pressure of the injector transitions to the saturated vapor pressure corresponding to the fuel injection temperature. Consequently, the exit pressure of the injector increases in tandem with the rapid increase of the saturation vapor pressure due to escalating fuel temperatures. This rise in the exit pressure necessitates a proportional increase in fuel injection pressure to ensure a fixed fuel mass flow rate. Furthermore, the investigation revealed that the discharge coefficient obtained by applying the exit pressure instead of the ambient pressure did exhibit no decrease, but rather was maintained at a nearly constant value, comparable to its level below the boiling point.