• 제목/요약/키워드: Oriented Strand Board

검색결과 28건 처리시간 0.02초

Mechanical Properties of the Oriented Strand Board (OSB) Distributed in the Korean Market

  • Eun-Chang KANG;Min LEE;Sang-Min LEE;Se-Hwi PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권4호
    • /
    • pp.253-269
    • /
    • 2023
  • Oriented strand board (OSB) distributed in Korea was collected, and its mechanical properties were investigated according to the International Organization for Standardization (ISO), Japanese Industrial Standards, and Korean Design Standard. Ten types of OSBs were collected, including six types for walls and others for floors. The thickness swelling, moisture content, and density of each product satisfied the ISO standards. All products showed lower formaldehyde emission values than those of the SE0 grade. The internal bonding strengths of all products, except products B, H, and I, met the ISO standards. However, products A, B, C, F, and H did not satisfy the thickness swelling standard of the load-bearing OSB for use in dry conditions. Products D and G showed heavy duty load-bearing OSB for use in humid conditions in terms of internal bonding and bending strength after boiling. In the nail head pull-through force and lateral nail resistance tests, all products met the standards. In terms of the structural bending performance (four points), the six types of OSBs for walls satisfied the standard for bending strength and modulus of elasticity. All the products for flooring met the standard for bending strength but, except for product G, the products did not meet the standard for modulus of elasticity. Although the results of this study cannot represent the performance of all imported OSBs, considering the above results, the water resistance performance of seven types of OSB products did not meet the standard, and 10 types of products did not match the labeling grades.

목질 보드류의 표면 열변화에 따른 접촉각(방습) 특성 (Moistureproof Characteristics of Woodboard Types with Surface Thermal Changes)

  • 신상호;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.161-162
    • /
    • 2020
  • In this study, as part of securing related data, water droplets were dropped on the upper part of the wooden board for flooring in an environment such as floor heating, and the degree of absorption according to the surface temperature change was tested. The test results showed that the contact angle of the surface was low (25℃→40℃) or the droplet was absorbed into the small plate and disappeared. The contact angle of the OSB and MDF was decreased within 30 minutes, but the surface water droplet was maintained longer than the plywood. This is because the surface is coated with hydrophobicity unlike the plywood, but moisture absorption in the cross section after the second processing will not be prevented and it will lead to defect occurrence problem.

  • PDF

Destructive and Non-destructive Tests of Bamboo Oriented Strand Board under Various Shelling Ratios and Resin Contents

  • Maulana, Sena;Gumelar, Yuarsa;Fatrawana, Adesna;Maulana, Muhammad Iqbal;Hidayat, Wahyu;Sumardi, Ihak;Wistara, Nyoman Jaya;Lee, Seung Hwan;Kim, Nam Hun;Febrianto, Fauzi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.519-532
    • /
    • 2019
  • The objectives of this study were to evaluate the effects of shelling ratio and resin content on the properties of bamboo oriented strand board (BOSB) from betung (Dendrocalamus asper) and to determine the correlation between the results of dynamic and static bending tests. Strands were steam-treated at $126^{\circ}C$ for 1 h under 0.14 MPa pressure and followed by washing with 1% NaOH solution. Three-layer BOSB with the core layer perpendicular to the surface was formed with shelling ratios (face:core ratio) of 30:70; 40:60; 50:50; 60:40 and binded with 7% and 8% of phenol formaldehyde (PF) resin with the addition of 1% of wax. The evaluation of physical and mechanical properties of BOSB was conducted in accordance with the JIS A 5908:2003 standard and the results were compared with CSA 0437.0 standard for commercial OSB (Grade O-1). Non-destructive testing was conducted using Metriguard Model 239A Stress Wave Timer which has a wave propagation time from 1 to $9,999{\mu}s$ and a resolution of $1{\mu}s$. BOSB with 8% resin content showed better physical and mechanical properties than those with 7% resin content. The increase of the face layer ratio improved the strength of BOSB in parallel direction to the grain. The results suggested that shelling ratio of 50:50 could be used as a simple way to reduce PF resin requirements from 8% to 7% and to meet the requirements of CSA 0437.0 standard. The results of non-destructive and destructive tests showed a strong correlation, suggesting that non-destructive test can be used to estimate the bending properties of BOSB.

그린팀버월 패널의 열전달 특성 (Heat transfer of green timber wall panels)

  • 김윤희;장상식;신일중
    • 농업과학연구
    • /
    • 제38권1호
    • /
    • pp.115-120
    • /
    • 2011
  • 20% of total energy use to sustain temperature of building inside. In this reasons, researchers effort to improve the thermal insulation capacity with new wall system. Using appropriate materials and consisting new wall system should considered in energy saving design. OSB(Oriented strand board), Larch lining board used to consist wall system. $2{\sim}6$ Larch lining board has tongue & groove shape for preventing moisture. Comparing with gypsum board and green timber lining board as interior sheathing material, temperature difference of Green timber wall system was bigger than temperature difference of gypsum board wall system. This aspects indicate that Green timber wall system was revealed higher thermal insulation property than gypsum board wall system. Gypsum board portion transfer heat easily because temperature difference gradient of gypsum board wall system was smaller than OSB wall system. Total temperature variation shape of G-4-S and G-6-S show similar model but, temperature variation shape in green timber wall portion assume a new aspect. The purpose of this study was that possibility of thermal insulation variation and new composition of wall system identify to improve thermal insulation performance. In the temperature case, this study shows possibility of improving thermal insulation performance. Humidity, sunshine and wind etc. should considered to determine building adiabatic properties.

3개월생 국산 대나무를 이용한 대나무 스트랜드보드 개발 (Developement of Bamboo Strand Board Made from 3 Months Old Domesitic Bamboo Species)

  • 이화형;강석구;김관의
    • 한국가구학회지
    • /
    • 제11권2호
    • /
    • pp.45-53
    • /
    • 2000
  • This study was carried out to determine the suitability of 3 months old bamboo species of Phyllostachys bambusoides S. et Z., Phyllostachys Pubescens Mazel and Phyllostachys nigra var henonis Stapf as raw materials for the manufacture of strandboard. Total of 108 strandboards were made using urea-formaldehyde resin content level of 12% and one percent of liquid wax emulsion. The strandboard consisted of three layers the top and the bottom layer of which were oriented to the same direction and weighted 25% of the strandboard each. The middle core layer weighed 50% of the board and was perpendicular to the outer top and bottom layers. Analysis was performed to determine the effect of strand lengths and Uowing years of 3 months, 2 years and 3 years on strandboard properties. The physical and mechanical properties of bamboo species and boards were measured and compared to the standard requirements of strandboards. The results are as follows; 1. The more the growing years the higher the density of bamboo. Top part of bamboo indicated higher density value than that of bottom part. 2. Bamboo showed higher static bending strength compared to the main wood species. Longer growing years of bamboo generally inclosed the static tending strength out there were no statistical significancies for Phyllostachys bmbusoides S. et Z. and Phyllostachys pubescens Mazel. 3. Strand length indicated no difference on density and moisture content of strandboard. 5 cm of strand length gave the best static bending strength and internal bonding strength. Bamboo strandboard exhibited lesser extents of thickness swelling than that of CSA standard. 4. 3 months old bamboo gave higher static bending strength of strandboard than those of 2 years and 3 years old bamboo. In case of Phyllostachys nigra var henonis Stapf, 3 months old bamboo indicated higher internal bonding strength than those of 2 years and 3years old bamboo. but in Phyllostachys bambusoides S. et Z., Phyllostachys pubescens Mazel, there were no difference among growing years. Growing years showed no different physical properties of bamboo strandboard.

  • PDF

Development of Oriented Strand Board from Acacia Wood (Acacia mangium Willd): Effect of Pretreatment of Strand and Adhesive Content on the Physical and Mechanical Properties of OSB

  • Febrianto, Fauzi;Royama, Lincah Ida;Hidayat, Wahyu;Bakar, Edi S.;Kwon, Jin-Heon;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권2호
    • /
    • pp.121-127
    • /
    • 2009
  • Acacia wood (Acacia mangium Willd.) is the most popular fast growing tree species planted in timber estate in Indonesia and is considered to be very valuable raw materials for structural composite products. The objective of the research was to evaluate the properties of OSB prepared from A. Mangium wood with or without immersing the strands to hot water at $80^{\circ}C$ for 2 hours. MDI adhesive was used in 3 levels i.e., 3%, 5%, and 7%. The moisture content of strand was 7%. The results indicated that immersing strands in hot water for 2 hours at $80^{\circ}C$ prior to manufacture OSB improved significantly the mechanical peoperties (i.e., MOR and MOE) of OSB. The higher the adhesive content resulted in the better the dimensional stabilisation (i.e., water absorption and thickness swelling) and the mechanical properties (i.e., MOR, MOE and IB) of OSB. OSB prepared from hot-water immersed strands with 5% adhesive content has met all parameters requirement on the JIS A 5908 (2003) standard.

Effect of Carbonization Temperature on Hygric Performance of Carbonized Fiberboards

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.615-623
    • /
    • 2014
  • Increases of public attention on healthy environment lead to the regulation of indoor air quality such as Clean Healthy House Construction Standard. This standard covers emission of total volatile organic compounds (TVOCs) (e.g., formaldehyde, benzene, and toluene), ventilation, and use of environmentally-friendly products or functional products. Moisture absorption and desorption abilities are a recommended functionality for improving indoor air quality. In this study, moisture absorption and desorption capacities of carbonized board from wood-based panels and other materials were determined by using UNT-HEAT-01 according to ISO 24358:2008. Pine had higher moisture absorption and desorption capacities ($49.0g/m^2$ and $35.3g/m^2$, respectively) than hinoki cypress, cement board, gypsum board, oriented strand board, and medium density fiberboard (MDF). The moisture absorption and desorption capacities differed considerably according to the wood species. After carbonization process at $400^{\circ}C$, the absorption and desorption ability of MDF increased to 38% and 60%, respectively. However, moisture absorption and desorption capacities decreased with increasing carbonization temperature, but they were still higher than original MDF. Therefore, it is suggested that carbonization below $600^{\circ}C$ can improve moisture absorption/desorption capacities.

스트랜드/파티클 복합체의 기계적 성질에 관한 연구(I) - 단면구성이 기초물성에 미치는 영향 - (A Study on Mechanical Properties of Strand/Particle Composites(I) - Effect of Layer Constructions -)

  • 김유정;시부사와 타츠야
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권3호
    • /
    • pp.1-8
    • /
    • 2000
  • 본 연구는 미이용 자원인 소경목(小經木) 조생수(早生樹) 등의 저질원료로부터 고성능을 지니는 구조용 보드를 제조하는 기술을 개발하는 것을 목적으로 하여 할렬 스트랜드 (S)/파티클(P) 복합체의 층구조와 S와 P의 혼합비율을 바꾼 단면구성에 따른 기초적 물성을 검토했다. 그 결과 스트랜드층을 포함하고 있는 SP 복합체의 경우, 전체적으로 휨성능(MOR, MOE)이 매우 높았다. 또 S단층 보드는 현저한 이방성을 나타내었지만 층구조가 PB에 가까워질수록 이방성은 감소하여, 7층 구조의 복합체는 이방성이 적었으며 특히 SP7은 직교방향도 휨강도가 높았다. 습윤시 휨강도 성능도 같은 경향을 나타내었다. 박리강도(IB)는 PB가 가장 높았고, 스트랜드층을 가진 복합체는 거의 같은 값을 나타내었다. 두께팽창율(TS) 은 PB가 가장 적은 값을 나타내었으며, 표층이 P층인 구조가 S표층구조보다 적은 경향을 나타내었다. 복합체의 표면특성은 표층 엘리먼트의 영향을 받아, 적고 미세한 엘리먼트인 P표층의 복합체가 크고 두꺼운 S표층 복합체보다 양호하였다. S와 P의 혼합비율의 영향은, SP비(比)를 증가시켜도 강도물성(MOR, MOE, IB)은 향상되지 않으며, 오히려 저하되는 것도 있었다. 두께팽창율(TS)은 SP 비(比) 1:1 이상의 복합체에서는 S만으로 제조한 보드와 같은 정도의 값을 나타내었다.

  • PDF

Ignition and Heat Release Rate of Wood-based Materials in Cone Calorimeter Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권2호
    • /
    • pp.1-8
    • /
    • 2008
  • This study was performed to evaluate the burning characteristics of wood-based materials and the effect of surface treatment of fire retardant using cone calorimeter. Four types of wood-based materials, such as Plywood, Oriented Strand Board (OSB), Particle Board (PB) and Medium Density Fiberboard (MDF), were tested at a constant heat flux of $50kW/m^2$ to investigate the time to ignition, mass loss rate, heat release rate, effective heat of combustion, etc. In addition, each type of wood-based material was tested at the same heat flux after fire retardant treatment on the surface to evaluate the effect of this treatment on the burning characteristics. The surface treatment of fire retardant, by the amount of $110g/m^2$, delayed the time to ignition almost twice. However, it was indicated that heat release rate, mass loss rate, and effective heat of combustion were not significantly affected by fire retardants treatment for all types of wood-based materials.

목질계 건축물 자재의 방염 성능 비교 평가

  • 채학병;안병권;최용묵;정국삼;원정훈
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2013년도 춘계학술대회 초록집
    • /
    • pp.105-106
    • /
    • 2013
  • 본 연구에서는 현재 사용되고 있는 대표적인 목질계 건축 재료를 대상으로 소방방재청 고시에 근거한 $45^{\circ}$연소성 실험을 실시하여 대상 실험 재료들의 방염 성능을 비교 평가 하였다. 실험결과, 잔진시간은 일반합판에서 높게 나타났고, 잔염시간은 OSB보드(Oriented Strand Board)에서 높게 나타난 것으로 분석되었다. 탄화면적과 탄화길이는 OSB보드와 중질 섬유판 보드(Medium Denstity Fiberboard)에서 높게 측정 되었으며, 6종류의 실험 제품들 모두 탄화면적과 탄화길이에서 기준치를 만족 못하는 것으로 평가 되었다.

  • PDF