• Title/Summary/Keyword: Orientation histogram

Search Result 51, Processing Time 0.02 seconds

Optical Flow Orientation Histogram for Hand Gesture Recognition (손 동작 인식을 위한 Optical Flow Orientation Histogram)

  • Aurrahman, Dhi;Setiawan, Nurul Arif;Oh, Chi-Min;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.517-521
    • /
    • 2008
  • Hand motion classification problem is considered as basis for sign or gesture recognition. We promote optical flow as main feature extracted from images sequences to simultaneously segment the motion's area by its magnitude and characterize the motion' s directions by its orientation. We manage the flow orientation histogram as motion descriptor. A motion is encoded by concatenating the flow orientation histogram from several frames. We utilize simple histogram matching to classify the motion sequences. Attempted experiments show the feasibility of our method for hand motion localization and classification.

  • PDF

Rotation Invariant Histogram of Oriented Gradients

  • Cheon, Min-Kyu;Lee, Won-Ju;Hyun, Chang-Ho;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.293-298
    • /
    • 2011
  • In this paper, we propose a new image descriptor, that is, a rotation invariant histogram of oriented gradients (RIHOG). RIHOG overcomes a disadvantage of the histogram of oriented gradients (HOG), which is very sensitive to image rotation. The HOG only uses magnitude values of a pixel without considering neighboring pixels. The RIHOG uses the accumulated relative magnitude values of corresponding relative orientation calculated with neighboring pixels, which has an effect on reducing the sensitivity to image rotation. The performance of RIHOG is verified via the index of classification and classification of Brodatz texture data.

Robust-to-rotation Iris Recognition Using Local Gradient Orientation Histogram (국부적 그래디언트 방향 히스토그램을 이용한 회전에 강인한 홍채 인식)

  • Choi, Chang-Soo;Jun, Byoung-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.268-273
    • /
    • 2009
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. In this paper, we propose a novel method based on local gradient orientation histogram which is robust to variations in illumination and rotations of iris patterns. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.

A Study on Hand Shape Recognition using Edge Orientation Histogram and PCA (에지 방향성 히스토그램과 주성분 분석을 이용한 손 형상 인식에 관한 연구)

  • Kim, Jong-Min;Kang, Myung-A
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.319-326
    • /
    • 2009
  • In this paper, we present an algorithm which recognize hand shape in real time using only image without adhering separate sensor. Hand recognizes using edge orientation histogram, which comes under a constant quantity of 2D appearances because hand shape is intricate. This method suit hand pose recognition in real time because it extracts hand space accurately, has little computation quantity, and is less sensitive to lighting change using color information in complicated background. Method which reduces recognition error using principal component analysis(PCA) method to can recognize through hand shape presentation direction change is explained. A case that hand shape changes by turning 3D also by using this method is possible to recognize. Human interface system manufacture technique, which controls a home electric appliance or game using, suggested method at experience could be applied.

  • PDF

Rotation Invariant Tracking-Learning-Detection System (회전에 강인한 실시간 TLD 추적 시스템)

  • Choi, Wonju;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.865-873
    • /
    • 2016
  • In recent years, Tracking-Learning-Detection(TLD) system has been widely used as a detection and tracking algorithm for vision sensors. While conventional algorithms are vulnerable to occlusion, and changes in illumination and appearances, TLD system is capable of robust tracking by conducting tracking, detection, and learning in real time. However, the detection and tracking algorithms of TLD system utilize rotation-variant features, and the margin of tracking error becomes greater when an object makes a full out-of-plane rotation. Thus, we propose a rotation-invariant TLD system(RI-TLD). we propose a simplified average orientation histogram and rotation matrix for a rotation inference algorithm. Experimental results with various tracking tests demonstrate the robustness and efficiency of the proposed system.

Development of Robust-to-Rotation Iris Feature Extraction Algorithms For Embedded System (임베디드 시스템을 위한 회전에 강인한 홍채특징 추출 알고리즘 개발)

  • Kim, Shik
    • The Journal of Information Technology
    • /
    • v.12 no.4
    • /
    • pp.25-32
    • /
    • 2009
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. This paper is appropriate for the embedded environment using local gradient histogram embedded system using iris feature extraction methods have implement. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.

  • PDF

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

Object Cataloging Using Heterogeneous Local Features for Image Retrieval

  • Islam, Mohammad Khairul;Jahan, Farah;Baek, Joong Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4534-4555
    • /
    • 2015
  • We propose a robust object cataloging method using multiple locally distinct heterogeneous features for aiding image retrieval. Due to challenges such as variations in object size, orientation, illumination etc. object recognition is extraordinarily challenging problem. In these circumstances, we adapt local interest point detection method which locates prototypical local components in object imageries. In each local component, we exploit heterogeneous features such as gradient-weighted orientation histogram, sum of wavelet responses, histograms using different color spaces etc. and combine these features together to describe each component divergently. A global signature is formed by adapting the concept of bag of feature model which counts frequencies of its local components with respect to words in a dictionary. The proposed method demonstrates its excellence in classifying objects in various complex backgrounds. Our proposed local feature shows classification accuracy of 98% while SURF,SIFT, BRISK and FREAK get 81%, 88%, 84% and 87% respectively.

A Study on Gesture Recognition using Edge Orientation Histogram and HMM (에지 방향성 히스토그램과 HMM을 이용한 제스처 인식에 관한 연구)

  • Lee, Kee-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2647-2654
    • /
    • 2011
  • In this paper, the algorithm that recognizes the gesture by configuring the feature information obtained through edge orientation histogram and principal component analysis as low dimensional gesture symbol was described. Since the proposed method doesn't require a lot of computations compared to the existing geometric feature based method or appearance based methods and it can maintain high recognition rate by using the minimum information, it is very well suited for real-time system establishment. In addition, to reduce incorrect recognition or recognition errors that occur during gesture recognition, the model feature values projected in the gesture space is configured as a particular status symbol through clustering algorithm to be used as input symbol of hidden Markov models. By doing so, any input gesture will be recognized as the corresponding gesture model with highest probability.

Using the obstacle position information of the mobile robot in the two-dimensional cartography Study (장애물 위치 정보를 이용한 모바일 로봇의 2차원 지도 작성에 관한 연구)

  • Lee, Jun-Ho;Hong, Hyun-Ju;Kang, Seog-Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.30-38
    • /
    • 2014
  • The purpose of this study is to build and manage environment models with line segments from sonar range data on obstacles in unknown and varied environments. The proposed method therefore employs a two-stage data-transform process in order to extract environmental line segments from range data on obstacles. In the first stage, the occupancy grid extracted from the range data is accumulated to form a two-dimensional local histogram grid. In the second stage, a line histogram extracted from a local histogram grid is based on a Hough transform, and matching serves as a means of comparing each of the segments on a global line segments map against the line segments to detect the degree of similarity in the overlap, orientation, and arrangement. Each of these tests is formulated by comparing one of the parameters in the segment representation. After the tests, new line segments can be found at maximum-density cells in the line histogram, and they are composed onto the global line segment map. The proposed technique is demonstrated in experiments in an indoor environment.