• Title/Summary/Keyword: Orientation Function

Search Result 489, Processing Time 0.023 seconds

Effects of Filler Characteristics and Processing Conditions on the Electrical, Morphological and Rheological Properties of PE and PP with Conductive Filler Composites

  • Kim, Youn-Hee;Kim, Dong-Hyun;Kim, Ji-Mun;Kim, Sung-Hyun;Kim, Woo-Nyon;Lee, Heon-Sang
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.110-115
    • /
    • 2009
  • The electrical, morphological and rheological properties of melt and dry mixed composites of poly ethylene (PE)/graphite (Gr), polypropylene (PP)/Gr and PP/nickel-coated carbon fiber (NCCF) were investigated as a function of filler type, filler content and processing temperature. The electrical conductivities of dry mixed PP/NCCF composites were increased with decreasing processing temperature. For the melt mixed PP/NCCF composites, the electrical conductivities were higher than those of the melt mixed PE/Gr and PP/Gr composites, which was attributed to the effect of the higher NCCF aspect ratio in allowing the composites to form a more conductive network in the polymer matrix than the graphite does. From the results of morphological studies, the fillers in the dry mixed PP/NCCF composites were more randomly dispersed compared to those in the melt mixed PP/NCCF composites. The increased electrical conductivities of the dry mixed composites were attributed to the more random dispersion of NCCF compared to that of the melt mixed PP/NCCF composites. The complex viscosities of the PP/Gr composites were higher than those of the PP/NCCF composites, which was attributed to the larger diameter of the graphite particles than that of the NCCF. Furthermore, the fiber orientation in the 'along the flow' direction during melt mixing was attributed to the decreased complex viscosities of the melt mixed PP/NCCF composites compared those of the melt mixed PP/Gr composites.

Characterization of CYP125A13, the First Steroid C-27 Monooxygenase from Streptomyces peucetius ATCC27952

  • Rimal, Hemraj;Subedi, Pradeep;Kim, Ki -Hwa;Park, Hyun;Lee, Jun Hyuck;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1750-1759
    • /
    • 2020
  • The characterization of cytochrome P450 CYP125A13 from Streptomyces peucetius was conducted using cholesterol as the sole substrate. The in vitro enzymatic assay utilizing putidaredoxin and putidaredoxin reductase from Pseudomonas putida revealed that CYP125A13 bound cholesterol and hydroxylated it. The calculated KD value, catalytic conversion rates, and Km value were 56.92 ± 11.28 μM, 1.95 nmol min-1 nmol-1, and 11.3 ± 2.8 μM, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis showed that carbon 27 of the cholesterol side-chain was hydroxylated, characterizing CYP125A13 as steroid C27-hydroxylase. The homology modeling and docking results also revealed the binding of cholesterol to the active site, facilitated by the hydrophobic amino acids and position of the C27-methyl group near heme. This orientation was favorable for the hydroxylation of the C27-methyl group, supporting the in vitro analysis. This was the first reported case of the hydroxylation of cholesterol at the C-27 position by Streptomyces P450. This study also established the catalytic function of CYP125A13 and provides a solid basis for further studies related to the catabolic potential of Streptomyces species.

"Dust, Ice, and Gas In Time" (DIGIT) Herschel Observations of GSS30-IRS1 in Ophiuchus

  • Je, Hyerin;Lee, Jeong-Eun;Green, Joel D.;Evans, Neal J. II
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.63.2-63.2
    • /
    • 2014
  • As a part of the "Dust, Ice, and Gas In Time" (DIGIT) key program on Herschel, we observed GSS30-IRS1, a Class I protostar located in Ophiuchus (d =125 pc), with Herschel/Photodetector Array Camera and Spectrometer (PACS). More than 70 lines were detected within a wavelength range from 50 ${\mu}m$ to 200 ${\mu}m$: CO lines from J = 14-13 to 41-40, several $H_2O$ lines of Eup = 100 K to 1500 K, 16 transitions of OH rotational lines, and two atomic [O I] lines at 63 and 145 ${\mu}m$. The [C II] line, known as a tracer of externally heated gas by the interstellar radiation field, is also detected at 158 ${\mu}m$. All lines, except [O I] and [C II], are detected only at the central spaxel of $9^{\prime\prime}.4{\times}9^{\prime\prime}.4$. The [O I] emission is extended along a NE-SW orientation, which is consistent with the known outflow direction, while the [C II] line is detected over all spaxels. One possible explanation of the detection of the [C II] line and no correlation of its spatial distribution with any other molecular emission is the existence of the enhanced ISRF nearby GSS30-IRS1. One interesting feature of GSS30-IRS1 is that the continuum emission is extended beyond the point-spread function (PSF), unlike the molecular line emission, indicative of significant external heating. The best-fit continuum model of GSS30-IRS1 with the physical structure including flared disk, envelope, and outflow shows that the internal luminosity is 11 $L_{\odot}$, and the region is also externally heated by a radiation field enhanced by a factor of 25 compared to the local standard interstellar field.

  • PDF

A Study on the Development of the Rock Blastability Classification and the Methods for Minimizing Overbereak in Tunnel (터널 굴착면 여굴 최소화를 위한 발파암 분류(안) 및 공법 개발 연구)

  • 이태노;김동현;서영화
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.303-310
    • /
    • 2002
  • Overbreak occurred inevitably in a tunnel excavation, Is the main factor for increasing cost and time in tunnel projects. Furthermore the damage to the remained rock mass related to the overbreak can give rise to a serious safety problem in tunnels. As a rule of thumb, causes for the overbreak are inaccuracy in drilling, the wrong design of blasting and selection of explosives, and heterogeneity in rock mass. Specially, the geological features of the rock mass around periphery of an excavation are very important factors, so a lot of researches have been conducted to describe these phenomena. But the quantitative geological classification of the rock mass for the overbreak and the method for decreasing the amount of the overbreak have not been established. Besides, the technical improvement of the charge method is requested as explosives for the smooth blasting have not functioned efficiently. In this study, the working face around periphery of an excavation has been continuously sectionalized to 5∼6 parts, and the new Blastability Index for the overbreak based on 6 factors of RMD(Rock Mass Description), UCS(Uniaxial Compressive Strength) JPS(Joint Plane Spacing), JPO(Joint Plane Orientation), JPA(Joint Plane Aperture) and FM(Filling Material) is proposed to classify sections of the working face. On the basis of this classification, the distance between contour holes and the charging density are determined to minimize the overbreak. For controlling the charging density and improving the function of explosives, the New Deck Charge(N.D.C) method utilizing the deck charge method and detonation transmission in hole has been developed.

  • PDF

A Study on the Flow Control around a Circular Cylinder by Control rods (제어봉을 부착한 원형실린더 주위 유동제어에 관한 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.169-174
    • /
    • 2007
  • The purpose in having a control rod an a buoy system is to control the motion of it. The system may be composed entirely af a single circular cylinder finder and a lang mooring anchor cable. A control rod has one function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of the effects of mutual interference, then determine the stability characteristics of the body. In this paper, the study of control-rod-attached buoy's 2-dimensional section was accomplished. model tests and numerical simulations had been carried out with different diameters of control rods. and varying the Reynolds number $Re=5,000{\sim}25,000$ based an the cylinder diameter(D=50mm) to. predict the performance af the body and the 2 frame particle tracking method had been used to obtain the velocity distribution in the flaw field 50mm circular cylinder had been used during the whale experiments and measured results had been compared with each other.

  • PDF

Implementing Dynamic Obstacle Avoidance of Autonomous Multi-Mobile Robot System (자율 다개체 모바일 로봇 시스템의 동적 장애물 회피 구현)

  • Kim, Dong W.;Yi, Cho-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • For an autonomous multi-mobile robot system, path planning and collision avoidance are important functions used to perform a given task collaboratively and cooperatively. This study considers these important and challenging problems. The proposed approach is based on a potential field method and fuzzy logic system. First, a global path planner selects the paths of the robots that minimize the cost function from each robot to its own target using a potential field. Then, a local path planner modifies the path and orientation from the global planner to avoid collisions with static and dynamic obstacles using a fuzzy logic system. In this paper, each robot independently selects its destination and considers other robots as dynamic obstacles, and there is no need to predict the motion of obstacles. This process continues until the corresponding target of each robot is found. To test this method, an autonomous multi-mobile robot simulator (AMMRS) is developed, and both simulation-based and experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

Study on Relative Stability of Geometrically Constrained Cyclopropylcarbinyl Cation by $^{19}$F-NMR Spectroscopy (풀루오르 19-NMR을 이용한 구조적으로 고정된 사이크로프로필카르비닐 양이온의 상대적 안정도의 비교)

  • Jung Hyu Shin;Bo Hyeon Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.213-219
    • /
    • 1985
  • The relative stability as a function of geometry in rigid cyclopropylcarbinyl cations was examined by $^{19}$F-nmr spectroscopy. 8-p-Fluorophenyl-tricyclo[3.3.1.0$^{2,7}$]octane-8-yl-(I), 9-p-fluorophenyl-tricyclo[3.3.1.0$^{2,8}$]nonane-9-yl (II), and 10-p-fluorophenyl-tricyclo[4.3.1.0$^{2,9}$]decane-10-yl cation(Ⅲ) were prepared from the corresponding carbinols in FSO$_3$H-SO$_2$ClF solution at -120$^{\circ}C$. $^{19}$F-nmr data indicate that the symmetrical bisected geometry of cyclopropane ring for ${\sigma}$-conjugation is a very impotant factor in charge delocalization. However, varied orientation of the bond angle ${\theta}$ within the bisected conformation does not affect the charge delocalization into the cyclopropane ring.

  • PDF

On Flow Charactistics around Special Rudders by PIV Measurement; Flapped and Water-blowing Rudder (PIV 계측에 의한 특수타 주위의 유동특성에 대하여; 플랩러더와 물분사러더)

  • Gim, Oxoc
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.200-207
    • /
    • 2017
  • The purpose in having a control surface on ships is to control the motion of the ship. The control surface may be composed entirely of a single movable surface or of a combination of fixed and movable portions. A control surface has one sole function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of this rotation and angle of attack then determine the manoeuvring characteristics of the ship. In this paper, two-dimensional flow characteristics of a flapped rudder and a water-blowing control rudder were accomplished respectively by PIV method in a circulating water channel. Model test has been carried out with different angles of attack of main foil (NACA 0012) and flap's deflection angles to predict the performance of the flapped rudder and the water-blowing control rudder. The 2-frame particle tracking method has been used to obtain the velocity distribution in the flow field. $Re{\fallingdotseq}3.0{\times}10^4$ has been used during the whole experiments and measured results have been compared with each other.

A Study on the Use of Communication Functions in Mobile Messenger Emoticons -Focus on Line Messenger- (모바일 메신저 이모티콘을 통한 커뮤니케이션에 관한 연구 -라인을 중심으로-)

  • Kim, Ho
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.184-191
    • /
    • 2017
  • Smartphone has become a part of many people's daily lives. The mobile messenger function on the smartphone in particular is the most frequently used services. The mobile communication tool in the age of digital media can be classified into two big categories: text messages and emoticons, the non-verbal expression tool of one's emotions. This thesis has studied the mobile communications made by the non-verbal tool of emoticons. The history of emoticons traces back to the text-based emoticon created by Scott Fahlman, from which graphical emoticons were developed and the sound and animation effects have been added. Many people use emoticons and diverse companies are developing the tool. In this study, the representative emoticon development case of Line Co., Ltd. is analyzed to see the concept, types, development process, collaborations and merchandising of the emoticons. Based on the case of Line, the development orientation and direction of domestic emoticons will be discussed to be culture contents.

AUTOMATIC PRECISION CORRECTION OF SATELLITE IMAGES

  • Im, Yong-Jo;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.40-44
    • /
    • 2002
  • Precision correction is the process of geometrically aligning images to a reference coordinate system using GCPs(Ground Control Points). Many applications of remote sensing data, such as change detection, mapping and environmental monitoring, rely on the accuracy of precision correction. However it is a very time consuming and laborious process. It requires GCP collection, the identification of image points and their corresponding reference coordinates. At typical satellite ground stations, GCP collection requires most of man-powers in processing satellite images. A method of automatic registration of satellite images is demanding. In this paper, we propose a new algorithm for automatic precision correction by GCP chips and RANSAC(Random Sample Consensus). The algorithm is divided into two major steps. The first one is the automated generation of ground control points. An automated stereo matching based on normalized cross correlation will be used. We have improved the accuracy of stereo matching by determining the size and shape of match windows according to incidence angle and scene orientation from ancillary data. The second one is the robust estimation of mapping function from control points. We used the RANSAC algorithm for this step and effectively removed the outliers of matching results. We carried out experiments with SPOT images over three test sites which were taken at different time and look-angle with each other. Left image was used to select UP chipsets and right image to match against GCP chipsets and perform automatic registration. In result, we could show that our approach of automated matching and robust estimation worked well for automated registration.

  • PDF