Browse > Article

Effects of Filler Characteristics and Processing Conditions on the Electrical, Morphological and Rheological Properties of PE and PP with Conductive Filler Composites  

Kim, Youn-Hee (Department of Chemical and Biological Engineering, Korea University)
Kim, Dong-Hyun (Department of Chemical and Biological Engineering, Korea University)
Kim, Ji-Mun (Department of Chemical and Biological Engineering, Korea University)
Kim, Sung-Hyun (Department of Chemical and Biological Engineering, Korea University)
Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University)
Lee, Heon-Sang (Tech Center, LG Chem. Ltd.)
Publication Information
Macromolecular Research / v.17, no.2, 2009 , pp. 110-115 More about this Journal
Abstract
The electrical, morphological and rheological properties of melt and dry mixed composites of poly ethylene (PE)/graphite (Gr), polypropylene (PP)/Gr and PP/nickel-coated carbon fiber (NCCF) were investigated as a function of filler type, filler content and processing temperature. The electrical conductivities of dry mixed PP/NCCF composites were increased with decreasing processing temperature. For the melt mixed PP/NCCF composites, the electrical conductivities were higher than those of the melt mixed PE/Gr and PP/Gr composites, which was attributed to the effect of the higher NCCF aspect ratio in allowing the composites to form a more conductive network in the polymer matrix than the graphite does. From the results of morphological studies, the fillers in the dry mixed PP/NCCF composites were more randomly dispersed compared to those in the melt mixed PP/NCCF composites. The increased electrical conductivities of the dry mixed composites were attributed to the more random dispersion of NCCF compared to that of the melt mixed PP/NCCF composites. The complex viscosities of the PP/Gr composites were higher than those of the PP/NCCF composites, which was attributed to the larger diameter of the graphite particles than that of the NCCF. Furthermore, the fiber orientation in the 'along the flow' direction during melt mixing was attributed to the decreased complex viscosities of the melt mixed PP/NCCF composites compared those of the melt mixed PP/Gr composites.
Keywords
polymer composites; conductive filler; electrical conductivity; morphology; rheology;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo, and W. N. Kim, Polymer, 47, 4434 (2006)   DOI   ScienceOn
2 S. Lee, Y. Lee, and J. W. Lee, Macromol. Res., 15, 44 (2007)   DOI
3 C. K. Kum, Y. T. Sung, Y. S. Kim, H. G. Lee, W. N. Kim, H. S. Lee, and H. G. Yoon, Macromol. Res., 15, 308 (2007)   DOI
4 J. Feng and C.-H. Chan, Polym. Eng. Sci., 39, 1207 (1999)   DOI
5 G. Yu, M.Q. Zhang, H. M. Zeng, Y. H. Hou, and H. B. Zhang, Polym. Eng. Sci., 39, 1678 (1999)   DOI
6 T. R. Ralph, Platinum Met. Rev., 41, 102 (1997)
7 T. Das, A. K. Banthia, B. Adhikari, H. Jeong, C.-S. Ha, and S. Alam, Macromol. Res., 14, 261 (2006)   DOI
8 J. Wind, R. Spah, W. Kaiser, and G. Bohm, J. Power Sources, 105, 256 (2002)   DOI   ScienceOn
9 D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, J. Power Sources, 86, 237 (2000)   DOI   ScienceOn
10 V. P. Privalko, D. I. Sukhorukov, and J. Karger-Kocsis, Polym. Eng. Sci., 39, 1525 (1999)   DOI
11 S. Srinivasan, J. Electrochem. Soc., 136, 41 (1989)   DOI   ScienceOn
12 G. Yu, M. Q. Zhang, H. M. Zeng, Y. H. Hou, and H. B. Zhang, J. Appl. Polym. Sci., 73, 489 (1999)   DOI   ScienceOn
13 S. J. Lee, S. Mukergee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, Electrochim. Acta, 43, 3693 (1998)   DOI   ScienceOn
14 B. S. Kim, S. H. BAe, Y.-H. Park, and J.-H. Kim, Macromol. Res., 15, 357 (2007)   DOI
15 D. H. Doughty, B. Vyas, T. Takamura, and J. R. Huff, Mater. Res. Soc., 393, 151 (1995)   DOI
16 R. C. Makkus, A. H. Janssen, F. A. de Bruijn, and R. K. Mallant, J. Power Sources, 86, 274 (2000)   DOI   ScienceOn
17 R. Hornung and G. Kappelt, J. Power Sources, 72, 20 (1998)   DOI   ScienceOn
18 S.-J. Park, M.-K. Seo, and J.-R. Lee, Compos. Interface, 13, 249 (2006)   DOI   ScienceOn
19 Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo, and W. N. Kim, Polymer, 47, 4434 (2006)   DOI   ScienceOn
20 S. M. Hong and S. S. Hwang, Compos. Interface, 13, 145 (2006)   DOI   ScienceOn
21 J.-M. Park and J.-W. Kim, Macromol. Res., 10, 24 (2002)   DOI
22 S. Srinivasan, Fuel Cells from Fundamentals to Applications, Springer, New York, 2006, Chap. 4
23 N. Mutong, W. Weiduan, and H. Guoying, Compos. Interface, 15, 1 (2008)   DOI   ScienceOn
24 J. M. Park, J. Col. Inter. Sci., 225, 384 (2000)   DOI   PUBMED   ScienceOn
25 M. Park, J. Kim, S. H. Kim, M. B. Ko, C. R. Choe, and V. S. Mironov, Korea Polym. J., 8, 6 (2000)
26 F. Mighri, M. A. Huneault, and M. F. Champagne, Polym. Eng. Sci., 44, 1755 (2004)   DOI   ScienceOn
27 C. K. Kum, Y. T. Sung, M. S. Han, W. N. Kim, H. S. Lee, S. J. Lee, and J. Joo, Macromol. Res., 14, 456 (2006)   DOI
28 J. M. Choi, T. J. Kim, M. S. Hyun, D. H. Peck, S. K. Kim, B. R. Lee, J. S. Park, and D. H. Jung, Carbon Sci., 6, 181 (2005)