Browse > Article
http://dx.doi.org/10.4014/jmb.2007.07004

Characterization of CYP125A13, the First Steroid C-27 Monooxygenase from Streptomyces peucetius ATCC27952  

Rimal, Hemraj (Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University)
Subedi, Pradeep (Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University)
Kim, Ki -Hwa (Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University)
Park, Hyun (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Lee, Jun Hyuck (Unit of Research for Practical Application, Korea Polar Research Institute)
Oh, Tae-Jin (Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.11, 2020 , pp. 1750-1759 More about this Journal
Abstract
The characterization of cytochrome P450 CYP125A13 from Streptomyces peucetius was conducted using cholesterol as the sole substrate. The in vitro enzymatic assay utilizing putidaredoxin and putidaredoxin reductase from Pseudomonas putida revealed that CYP125A13 bound cholesterol and hydroxylated it. The calculated KD value, catalytic conversion rates, and Km value were 56.92 ± 11.28 μM, 1.95 nmol min-1 nmol-1, and 11.3 ± 2.8 μM, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis showed that carbon 27 of the cholesterol side-chain was hydroxylated, characterizing CYP125A13 as steroid C27-hydroxylase. The homology modeling and docking results also revealed the binding of cholesterol to the active site, facilitated by the hydrophobic amino acids and position of the C27-methyl group near heme. This orientation was favorable for the hydroxylation of the C27-methyl group, supporting the in vitro analysis. This was the first reported case of the hydroxylation of cholesterol at the C-27 position by Streptomyces P450. This study also established the catalytic function of CYP125A13 and provides a solid basis for further studies related to the catabolic potential of Streptomyces species.
Keywords
Streptomyces peucetius; cytochrome P450; CYP125A13; 27-hydroxycholesterol; regio-selective hydroxylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dzeletovic S, Breuer O, Lund E, Diczfalusy U. 1995. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal. Biochem. 225: 73-80.   DOI
2 Ouellet H, Guan S, Johnston JB, Chow ED, Kells PM, Burlingame AL, et al. 2010. Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol. Microbiol. 77: 730-742.   DOI
3 Sali A, Blundell TL. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779-815.   DOI
4 Lovell SC, Davis IW, Arendall 3rd WB, de Bakker PIW, Word JM, Prisant MG, et al. 2003. Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins 50: 437-450.   DOI
5 Sippl MJ. 1993. Recognition of errors in three-dimensional structures of proteins. Proteins 17: 355-362.   DOI
6 Trott O, Olson AJ. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.   DOI
7 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. 2009. AutoDock4 and AutoDock Tools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791.   DOI
8 DeLano, Warren L. 2002. Pymol: An open-source molecular graphics tool. Ccp4 Newsl. Protein Cryst. 40: 82-92.
9 Mak PJ, Denisov IG. 2018. Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim. Biophys. Acta Proteins Proteom. 1866: 178-204.   DOI
10 Conner KP, Schimpf AM, Cruce AA, McLean KJ, Munro AW, Frank DJ, et al. 2014. Strength of axial water ligation in substrate-free cytochrome P450s is isoform dependent. Biochemstry 53: 1428-1434.   DOI
11 Denisov IG, Makris TM, Sligar SG, Schlichting I. 2005. Structure and chemistry of cytochrome P450. Chem. Rev. 105: 2253-2278.   DOI
12 Guengerich FP. 2018. Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal. 8: 10964-10976.   DOI
13 Bernhardt R, Urlacher VB. 2014. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl. Microbiol. Biotechnol. 98: 6185-6203.   DOI
14 Girvan HM, Marshall KR, Lawson RJ, Leys D, Joyce MG, Clarkson J, et al. 2004. Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set. J. Biol. Chem. 279: 23274-23286.   DOI
15 McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, et al. 2009. The structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J. Biol. Chem. 51: 35524-35533.
16 Jung C, Ristau O, Rein H. 1991. The high-spin/low-spin equilibrium in cytochrome P-450 a new method for determination of the high-spin content. Biochim. Biophys. Acta 1076: 130-136.   DOI
17 McLafferty FW, Stauffer DB. 1989. The Wiley / NBS Registry of Mass Spectral Data, 7 volume Set. Wiley, New York.
18 Mast N, Graham SE, Andersson U, Bjorkhem I, Hill C, Peterson J, et al. 2005. Cholesterol binding to cytochrome P450 7A1, a key enzyme in bile acid biosynthesis. Biochemistry 44: 3259-3271.   DOI
19 Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR. 2009. Biochemical and structural characterization of CYP124: a methylbranched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 106: 20687-20692.   DOI
20 Bhattarai S, Liou K, Oh TJ. 2013. Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch. Biochem. Biophys. 539: 63-69.   DOI
21 Guengerich FP. 2002. Cytochrome P450 enzymes in the generation of commercial products. Nat. Rev. Drug Discov. 1: 359-366.   DOI
22 Podust LM, Sherman DH. 2012. Diversity of P450 enzymes in the biosynthesis of natural products. Nat. Prod. Rep. 29: 1251-1266.   DOI
23 Cerqueira NM, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, et al. 2016. Cholesterol biosynthesis: a mechanistic overview. Biochemistry 55: 5483-5506.   DOI
24 Modi AR, Dawson JH. 2015. Oxidizing intermediates in P450 catalysis: a case for multiple oxidants. Adv. Exp. Med. Biol. 851: 63-81.   DOI
25 Hrycay EG, Bandiera SM. 2012. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch. Biochem. Biophys. 522: 71-89.   DOI
26 Lamb DC, Guengerich FP, Kelly SL, Waterman MR. 2006. Exploiting Streptomyces coelicolor A3(2) P450s as a model for application in drug discovery. Expert Opin. Drug Metab. Toxicol. 2: 27-40.   DOI
27 Lee W, VanderVen BC, Fahey RJ, Russell DG. 2013. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288: 6788-6800.   DOI
28 Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, et al. 2009. Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of C27 steroids. J. Biol. Chem. 284: 35534-35542.   DOI
29 Van Der Geize R, Dijkhuizen L. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 7: 255-261.   DOI
30 Rosloniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, et al. 2009. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol. Microbiol. 74: 1031-1043.   DOI
31 De Montellano PRO. 2015. Cytocyhrome pp.450. Structure, mechanism, and biochemistry. Fourth edition. Springer Science & Business Media.
32 Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J. 2009. Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J. Bacteriol. 191: 6584-6591.   DOI
33 Sojo M, Bru R, Lopez-Molina D, Garcia-Carmona F, Arguelles JC. 1997. Cell-linked and extracellular cholesterol oxidase activities from Rhodococcus erythropolis. Isolation and physiological characterization. Appl. Microbiol. Biotechnol. 47: 583-589.   DOI
34 Chiang YR, Ismail W, Heintz D, Schaeffer C, Van Dorsselaer A, Fuchs G. 2008. Study of anoxic and oxic cholestreol metabolism by Stereolibacterium denitrificans. J. Bacteriol. 190: 905-914.   DOI
35 Chen YR, Huan HH, Cheng TF, Tang TY, Liu WH. 2006. Expression of a cholesterol oxidase gene from Arthrobacter simplex in Escherichia coli and Pichia pastoris. Enzyme Microb. Technol. 39: 258-262.
36 Petrusma M, Hessels G, Dijkhuizen L, van der Geize R. 2011. Multiplicity of 3-Ketosteroid-9α-Hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. J. Bacteriol. 193: 3931-3940.   DOI
37 Sih CJ, Wang KC, Tai HH. 1968. Mechanism of steroid oxidation by microorganisms XIII. C22 acid intermediates in the degradation of the cholesterol side chain. Biochemistry 7: 796-807.   DOI
38 Fujimoto Y, Chen CS, Szeleczky Z, DiTullio D, Sih CJ. 1982. Microbial degradation of the phytosterol side chain. 1. Enzymatic conversion of 3-oxo-24-ethylcholest-4-en-26-oic acid into 3-oxochol-4-en-24-oic acid and androst-4-ene-3,17-dione. J. Am. Chem. Soc. 104: 4718-4720.   DOI
39 Fujimoto Y, Chen CS, Gopalan AS, Sih CJ. 1982. Microbial degradation of the phytosterol side chain. 2. Incorporation of NaH14Co3 onto the C-28 position. J. Am. Chem. Soc. 104: 4720-4722.   DOI
40 Marsheck WJ, Kraychy S, Muir RD. 1972. Microbial degradation of sterols. Appl. Microbiol. 23: 72-77.   DOI
41 Nicholas KB, Nicholas HB. 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments. Computer Science, Biology.
42 Sih CJ, Tai HH, Tsong YY, Lee SS, Coombe RG. 1968. Mechanisms of steroid oxidation by microorganisms. XIV. Pathway of cholesterol side-chain degradation. Biochemistry 7: 808-818.   DOI
43 Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.   DOI
44 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4: 406-425.
45 Johnston JB, Ouellet H, Ortiz de Montellano PR. 2010. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J. Biol. Chem. 285: 36352-36360.   DOI
46 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI
47 Mouri T, Michizoe J, Ichinose H, Kamiya N, Goto M. 2006. A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration. Appl. Microbiol. Biotechnol. 72: 514-520.   DOI
48 Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes: Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.   DOI
49 Ahmida HS, Bertucci P, Franzò L, Massoud R, Cortese C, Lala A, et al. 2006. Simultaneous determination of plasmatic phytosterols and cholesterol precursors using gas chromatography-mass spectrometry (GC-MS) with selective ion monitoring (SIM). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 14: 43-47.