• Title/Summary/Keyword: Organization Resistance

Search Result 166, Processing Time 0.031 seconds

The Impact of Organization Member's Self-Congruity on the Performance of the Acquisition of New Information Technology (조직 구성원의 자아 일치성이 신규 정보기술 도입의 성과에 미치는 영향)

  • Bae, Seon-Jin;Suh, Bomil
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.2
    • /
    • pp.29-59
    • /
    • 2016
  • These days, the business environment such as Information Technology (IT) is rapidly changing, and organizations are consistently trying to change themselves for the survival and success under the changing environment. In this situation, change management is very important because it draws the change behaviors of organization members for the success of organizational change. The purpose of this study is to investigate the effect of the organization members' psychological factors on the performance of the acquisition of new IT, which is one of the most important organizational change. Based on previous studies in the area of organizational change, organization members' resistance to change, self-congruity theory, change activities and organizational performance, the research model is developed for validating the effect of organization members' self-congruity on the performance of the acquisition of new IT. Statistical analyses show that self-congruity has a significant effect on the change activities. In particular, private self-congruity has more impact on the change activities than public self-congruity. In addition, self-leadership, rewards and recognitions, and the diffusion of change activities have significant effects on job satisfaction. Self-leadership has a significant effect on organizational commitment.

Compensation of Resistance Variation due to Temperature in Voltage Measurement System (온도에 따른 저항 변화를 보상한 전압 측정 방법)

  • Min, Sang-Jun;Kim, Jin-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1174-1177
    • /
    • 2012
  • In voltage measurement by using voltage divider with series resistors, error is generated caused by the variation of resistance. In order to reduce these errors, the hardware cost tends to increase in the previous works. In the proposed method, three resistors are used for the voltage divider of which the organization is adjusted by using switches. Three voltages are measured and the ratio of resistance is calculated based on the measured voltages. Since the resistance ratio is calculated by measuring voltages and additional hardware cost is minimal, the voltage can be measured with high accuracy and low cost. Experimental results show that the mean absolute error is 12.1 mV when the input voltage ranges from 5 V to 50 V.

Characteristics of ($AI_2$ $O_3$40%$YiO_2$)NiCr thermal sprayed composite coatings (($AI_2$ $O_3$40%$YiO_2$)NiCr 복합용사피막의 특성)

  • 김경호;박경채;김태형
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.114-116
    • /
    • 2003
  • The multi function sprayed coating is used for direct-heating, wear resistance and high bonding strength. The merits of surface direct-heating coatings are short warming time, low power consumption and better wear resistance that can be used in many organization parts. In this study, the surface direct-heating and wear resistance can be improved by spraying the proper materials on the surface $Al_2$O$_3$40%TiO$_2$ powder and Ni-20%Cr powder that had the properties of conduction and high wear resistivity are used in order to improve wear resistance, electrical properties and bonding strength.

  • PDF

Mechanosensitive Modulation of Receptor-Mediated Crossbridge Activation and Cytoskeletal Organization in Airway Smooth Muscle

  • Hai, Chi-Ming
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2000
  • Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for control1ing airway resistance in airway diseases.

  • PDF

Understanding Rifampicin Resistance in Tuberculosis through a Computational Approach

  • Kumar, Satish;Jena, Lingaraja
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.276-282
    • /
    • 2014
  • The disease tuberculosis, caused by Mycobacterium tuberculosis (MTB), remains a major cause of morbidity and mortality in developing countries. The evolution of drug-resistant tuberculosis causes a foremost threat to global health. Most drug-resistant MTB clinical strains are showing resistance to isoniazid and rifampicin (RIF), the frontline anti-tuberculosis drugs. Mutation in rpoB, the beta subunit of DNA-directed RNA polymerase of MTB, is reported to be a major cause of RIF resistance. Amongst mutations in the well-defined 81-base-pair central region of the rpoB gene, mutation at codon 450 (S450L) and 445 (H445Y) is mainly associated with RIF resistance. In this study, we modeled two resistant mutants of rpoB (S450L and H445Y) using Modeller9v10 and performed a docking analysis with RIF using AutoDock4.2 and compared the docking results of these mutants with the wild-type rpoB. The docking results revealed that RIF more effectively inhibited the wild-type rpoB with low binding energy than rpoB mutants. The rpoB mutants interacted with RIF with positive binding energy, revealing the incapableness of RIF inhibition and thus showing resistance. Subsequently, this was verified by molecular dynamics simulations. This in silico evidence may help us understand RIF resistance in rpoB mutant strains.

Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing

  • Han, Jiyeon;Jung, Yeonjoo;Jun, Yukyung;Park, Sungsu;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

Study on the Short Resistance and Shorting of Membrane of PEMFC (PEMFC 고분자 막의 Short 저항 및 Shorting에 관한 연구)

  • Oh, Sohyeong;Gwon, Jonghyeok;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The shorting resistance (SR) of the PEMFC(Proton Exchange Membrane Fuel Cell) polymer membrane is an important indicator of the durability of the membrane. When SR decreases, shorting current (SC) increases, reducing durability and performance. When SR becomes less than about 0.1 kΩ·㎠, shorting occurs, the temperature rises rapidly, and MEA(Membrane Electrode Assembly) is burned to end stack operation. In order to prevent shorting, we need to control the SR, so the conditions affecting the SR were studied. There were differences in the SR measurement methods, and the SR measurement method, which improved the DOE(Department of Energy) and NEDO(New Energy and Industrial Technology Development Organization) method, was presented. It was confirmed that the SR decreases as the relative humidity, temperature and cell compression pressure increase. In the final stage of the accelerated durability evaluation process of the polymer membrane, SR rapidly decreased to less than 0.1 kΩ·㎠, and the hydrogen permeability became higher than 15 mA/㎠. After dismantling the MEA, SEM(Scanning Electron Microscope) analysis showed that a lot of platinum was distributed inside the membrane.

정보시스템 사용에 대한 내부통제 효과성이 정보역량에 미치는 영향에 관한 연구

  • Lee, Jae-Beom;Kim, Sang-Su;Lee, Jae-Cheol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.58-63
    • /
    • 2007
  • Recently, as the management environments are changing rapidly and the uncertainty is becoming larger, the needs of internal control for management and IS become stronger. In order to construct a new internal control system for IS, it is necessary to evaluate the former research of the system. This study emphasizes the importance of effective internal control system, presents a conceptual framework for the preceding factors to consider, and verifies empirically the framework. This study sets the organization citizenship behavior, IS innovation resistance, and IT capability from the viewpoint of Socio-Technical system as the preceding factors for the effectiveness of internal control system. A research model, affecting the above factors on IS capability as a mediating variable of the internal control effectiveness for the use of IS, is set up. PLS-Graph 3.0 is used to verify the model. We found that the internal control effectiveness have affirmative effect on information capability, a surrogate variable of the IS effectiveness and a mediation effect is meaningful.

  • PDF

Pathogenic Diversity of Ascochyta rabiei Isolates and Identification of Resistance Sources in Core Collection of Chickpea Germplasm

  • Farahani, Somayeh;Talebi, Reza;Maleki, Mojdeh;Mehrabi, Rahim;Kanouni, Homayoun
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.321-329
    • /
    • 2019
  • Ascochyta blight caused by Ascochyta rabiei (Pass.) Lab. (Telomorph: Didymella rabiei) (Kov.) is one of the most important fungal diseases in chickpea worldwide. Knowledge about pathogen aggressiveness and identification resistance sources to different pathotypes is very useful for proper decisions in breeding programs. In this study, virulence of 32 A. rabiei isolates from different part of Iran were analyzed on seven chickpea differentials and grouped into six races based on 0-9 rating scale and susceptibility/resistant pattern of chickpea differentials. The least and most frequent races were race V and race I, respectively. Race V and VI showed highly virulence on most of differential, while race I showed least aggressiveness. Resistance pattern of 165 chickpea genotypes also were tested against six different A. rabiei races. ANOVA analysis showed high significant difference for isolate, chickpea genotypes and their interactions. Overall $chickpea{\times}isolate$ (race) interactions, 259 resistance responses (disease severity ${\leq}4$) were identified. Resistance spectra of chickpea genotypes showed more resistance rate to race I (49.70%) and race III (35.15%), while there were no resistance genotypes to race VI. Cluster analysis based on disease severity rate, grouped chickpea genotypes into four distinct clusters. Interactions between isolates or races used in this study, showed the lack of a genotype with complete resistance. Our finding for virulence pattern of A. rabiei and newly identified resistance sources could be considerably important for integration of ascochyta blight resistance genes into chickpea breeding programs and proper decision in future for germplasm conservation and diseases management.

Railway Rolling Stock - Test Methods for Running Resis (철도차량의 주행저항 측정 및 평가방법)

  • Lee, Chan-Woo;Hur, Hyun-Moo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.985-988
    • /
    • 2001
  • Revision and establish of KS(Korean Standards) is currently actively discussed. It is just the time for a new world class standards under the new system with WTO(World Trade Organization). This paper is a part of "Researchs on the Standards in Railway rolling stock Field", as one of KS establish projects. The aim of this study is to define the requirements of railway rolling stock-test methods for running resistance. In the former KS, there is no items matched with this purpose. Therefore a new part of KS is proposed.

  • PDF