• Title/Summary/Keyword: Organic-Inorganic Hybrid Material

Search Result 102, Processing Time 0.024 seconds

A Study on the Preparation and Growth Mechanism of Titanium Dioxide using Organic-Inorganic Hybrid Titanium Complex (유무기 하이브리드 티타늄 착화합물을 이용한 티타니아의 제조 방법 및 성장 거동에 대한 연구)

  • Kang, Yubin;Choi, Jin-Ju;Kwon, Nam Hun;Kim, Dae-Guen;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.487-492
    • /
    • 2019
  • Titanium dioxide (TiO2) is a typical inorganic material that has an excellent photocatalytic property and a high refractive index. It is used in water/air purifiers, solar cells, white pigments, refractory materials, semiconductors, etc.; its demand is continuously increasing. In this study, anatase and rutile phase titanium dioxide is prepared using hydroxyl and carboxyl; the titanium complex and its mechanism are investigated. As a result of analyzing the phase transition characteristics by a heat treatment temperature using a titanium complex having a hydroxyl group and a carboxyl group, it is confirmed that the material properties were different from each other and that the anatase and rutile phase contents can be controlled. The titanium complexes prepared in this study show different characteristics from the titania-formation temperatures of the known anatase and rutile phases. It is inferred that this is due to the change of electrostatic adsorption behavior due to the complexing function of the oxygen sharing point, which crystals of the TiO6 structure share.

Controlled Growth of Layered Silver Stearate on 2D and 3D Surfaces

  • Lee, Seung-Joon;Han, Sang-Woo;Kim, Kwan
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.517-522
    • /
    • 2003
  • This investigation confirms that silver stearate consists of an infinite-sheet, two-dimensional, nonmolecular layered structure. Scanning electron microscopy, X-ray diffraction, and infrared spectroscopy reveal the following: plate-like morphology is identified from the SEM image, XRD peaks can be indexed to the (0k0) reflections of a layered structure, and infrared peaks show that alkyl chains are present in an all-trans conformational state with little or no significant gauche population. Based on these structural characteristics, we demonstrate that silver stearate, a prototype of layered organic-inorganic hybrid material, can be grown not only in a designed two-dimensional pattern but also in three-dimensionally ordered ways by using carboxyl-group terminated nanoparticles as a template.

  • PDF

POSS/Polyurethane Hybrids and Nanocomposites: A Review on Preparation, Structure and Performance

  • Diao, Shuo;Mao, Lixin;Zhang, Liqun;Wang, Yiqing
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • Polyhedral oligomeric silsesquioxane (POSS) is an important inorganic-organic hybrid material with a three-dimensional structure. Polyurethane (PU) is a widely applied polymer that has versatile properties with the change of two phase structure. When POSS is incorporated into PU by physical or chemical methods, many properties can be greatly improved, such as mechanical properties, thermal stability, biodegradation resistance, and water resistance. This paper reviews the recent progress in preparation, structure, and performance of POSS-modified polyurethane from the viewpoint of physical blending and chemical modification.

Preparation and Characterization of Sol-Gel Derived $SiO_2-TiO_2$ -PDMS Composite Films

  • Hwang, Jin Myeong;Yeo, Chang Seon;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1366-1370
    • /
    • 2001
  • Thin films of the SiO2-TiO2-PDMS composite material have been prepared by the sol-gel dip coating method. Acid catalyzed solutions of tetraethoxy silane (TEOS) and polydimethyl siloxane (PDMS) mixed with titanium isopropoxide Ti(OiPr) were used as precursors. The optical and structural properties of the organically modified 70SiO2-30TiO2 composite films have been investigated with Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Spectroscopy (UV-Vis), Differential Thermal Analysis (DTA) and prism coupling technique. The films coated on the soda-lime-silicate glass exhibit 450-750 nm thickness, 1.56-1.68 refractive index and 88-94% transmittance depending on the experimental parameters such as amount of PDMS, thermal treatment and heating rate. The optical loss of prepared composite film was measured to be about 0.34 dB/cm.

CO2 Adsorption in Metal-organic Frameworks (금속유기구조체를 이용한 이산화탄소 흡착 연구)

  • Kim, Jun;Kim, Hee-Young;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.171-180
    • /
    • 2013
  • Metal organic frameworks (MOFs) are a class of crystalline organic-inorganic hybrid compounds formed by coordination of metal clusters or ions with organic linkers. MOFs have recently attracted intense research interest due to their permanent porous structures, large surface areas and pore volume, high-dispersed metal species, and potential applications in gas adsorption, separation, and catalysis. $CO_2$ adsorption in MOFs has been investigated in two areas of $CO_2$ storage at high pressures and $CO_2$ adsorption at atmospheric pressure conditions. In this short review, $CO_2$ adsorption/separation results using MOFs conducted in our laboratory was explained in terms of four contributing effects; (1) coordinatively unsaturated open metal sites, (2) functionalization, (3) interpenetration/catenation, and (4) ion-exchange. Zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs) were also considered as a candidate material.

Printability of Thermally and Chemically Stable Silica-Titanium Dioxide Composite Coating Layer (실리카-이산화티탄 복합 코팅층의 열적, 화학적 안정성 및 인쇄적성 평가)

  • Kim, Hye Jin;Han, Kyu Sung;Hwang, Kwang Taek;Nahm, Sahn;Kim, Jin Ho
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.631-638
    • /
    • 2019
  • As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above $300^{\circ}C$ and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.

A Study of the Dielectric Characteristics of the Low-k SiOCH Thin Films by Ellipsometry (Ellipsometry를 이용한 Low-k SiOCH 박막의 유전특성에 관한 연구)

  • Yi, In-Hwan;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1083-1089
    • /
    • 2008
  • We studied the dielectric characteristics of low-k SiOCH thin films by Ellipsometry. The SiOCH thin films were prepared by deposition of BTMSM precursors on p-Si wafer by CCP-PECVD method. The nano-porous structural organic/inorganic hybrid-type of SiOCH thin films correlated directly to the formation of low dielectrics close to pore(k=1). The structural groups including highly dense pores in SiOCH thin films originated the anisotropic geometry type of network structure directing to complex refractive characteristics of SiOCH single layer on the p-Si wafer. The linearly polarized beam of Xe-ramp in the range from 190 nm to 2100 nm introduced to the surface of SiOCH thin film, and the reflected beam was Elliptically polarized by complex refractive coefficients of SiOCH dipole groups. The amplitude variation $\Psi$ and phase variation $\Delta$ of the relative reflective coefficients between perpendicular and parallel components to the incident plane were measured by Ellipsometry. The complex optical constants n and k as well as the dielectric constant and thickness of SiOCH thin films were driven by the measured value of $\Psi$ and $\Delta$.

A Study of Optical Characteristics Correlated with Low Dielectric Constant of SiOCH Thin Films Through Ellipsometry (Ellipsometry를 이용한 저 유전상수를 갖는 SiOCH박막의 광학특성 연구)

  • Park, Yong-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.228-233
    • /
    • 2010
  • We studied the optical characteristics correlated with low dielectric constants of low-k SiOCH thin films through ellipsometry. The low-k SiOCH thin films were prepared by CCP-PECVD method using BTMSM(Bis-trimethylsilylmethane) precursors deposited on p-Si wafer. The Si-O-CHx, Si-O-Si, Si-CHx, CHx and Si-H bonding groups were specified by FTIR spectroscopic spectra, and the groups coupled with the nano-porous structural organic/inorganic hybrid-type of SiOCH thin films which has extremely low dielectric constant close to 2.0. The structural groups includes highly dense pore as well as ions in SiOCH thin films affecting to complex refraction characteristics of single layer on the p-Si wafer. The structural complexity originate the complex refractive constants of the films, and resulted the elliptical polarization of the incident linearly polarized light source of Xe-light source in the range from 190 nm to 2100 nm. Phase difference and amplitude ratio between s wave and p wave propagating through SiOCH thin film was studied. After annealing, the amplitude of p wave was reduced more than s wave, and phase difference between p and s wave was also reduced.

Impact of Solution-Processed BCP Buffer Layer on Efficient Perovskite Solar Cells (페로브스카이트 태양전지에서의 저온 용액 공정의 BCP 버퍼층 효과)

  • Jung, Minsu;Choi, In Woo;Kim, Dong Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.73-77
    • /
    • 2021
  • Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency in 2020 from 3.8% in 2009. In normal structured perovskite solar cells, TiO2 electron-transporting materials require heat treatment process at a high temperature over 450℃ to induce crystallinity. Inverted perovskite solar cells have also been studied to exclude the additional thermal process by using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a non-oxide electron-transporting layer. However, the drawback of the PCBM layer is a charge accumulation at the interface between PCBM and a metal electrode. The impact of bathocuproin (BCP) buffer layer on photovoltaic performance has been investigated herein to solve the problem of PCBM. 2-mM BCP-modified perovskite solar cells were observed to exhibit a maximum efficiency of 12.03% compared with BCP-free counterparts (5.82%) due to the suppression of the charge accumulation at the PCBM-Au interface and the resulting reduction of the charge recombination between perovskite and the PCBM layer.

Weatherability of Organic-Inorganic Hybrid Coating Agents with N-Triethoxy silyl propyl quinine urethane (N-Triethoxy silyl propyl quinine urethane을 도입한 유-무기 복합 코팅제의 내후성)

  • Lee, Man Sung;Jo, Nam-Ju
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2001
  • Recently polycarbonate material has been utilized as windows in aircraft, buildings, and optical lens. However, while polycarbonate has excellent optical transparency, impact strength and many beneficial mechanical properties, it possesses poor abrasion resistance and weatherability. Then, there is a need for developing optically clear, anti-abrasive and weather resistant hard coating agents for polycarbonate. In this study, N-triethoxy silyl propyl quinine urethane(TESPQU) was synthesized with quinine and 3-isocyanato propyl triethoxy silane(3-IPTES). In order to introduce optically active silane in the main siloxane network, TESPQU was co-hydrolysed and co-condensed with methyl triethoxy silane(MTES) under acidic conditions. Polycarbonate sheets were coated with silica coating agents by the sol-gel method, and their abrasion resistance, ability of UV absorption and weatherability were evaluated. Coating agents containing hydroxybenzophenone as a UV absorber were also prepared to compare weatherability with TESPQU containing coating agent. TESPQU containing coating agent had good weatherability in accelerated QUV test.

  • PDF